conv1/kernel:0 |
(7, 7, 3, 64) |
-0.8616 |
+0.8539 |
+0.1314 |
bn_conv1/gamma:0 |
(64,) |
+0.0843 |
+2.6420 |
+0.5087 |
bn_conv1/beta:0 |
(64,) |
-2.4174 |
+5.4189 |
+1.9981 |
bn_conv1/moving_mean:0 |
(64,) |
-172.9685 |
+94.5717 |
+42.0063 |
bn_conv1/moving_variance:0*** Overflow? |
(64,) |
+0.0000 |
+110557.9688 |
+16228.7607 |
res2a_branch2a/kernel:0 |
(1, 1, 64, 64) |
-0.6603 |
+0.3208 |
+0.0768 |
bn2a_branch2a/gamma:0 |
(64,) |
+0.2189 |
+1.8654 |
+0.4149 |
bn2a_branch2a/beta:0 |
(64,) |
-2.1375 |
+3.7690 |
+1.1904 |
bn2a_branch2a/moving_mean:0 |
(64,) |
-6.3118 |
+7.4370 |
+2.4037 |
bn2a_branch2a/moving_variance:0 |
(64,) |
+0.0000 |
+8.8091 |
+2.1498 |
res2a_branch2b/kernel:0 |
(3, 3, 64, 64) |
-0.3813 |
+0.5123 |
+0.0323 |
bn2a_branch2b/gamma:0 |
(64,) |
+0.3195 |
+1.7454 |
+0.3143 |
bn2a_branch2b/beta:0 |
(64,) |
-1.9530 |
+4.5882 |
+1.5261 |
bn2a_branch2b/moving_mean:0 |
(64,) |
-6.7890 |
+4.2754 |
+2.2064 |
bn2a_branch2b/moving_variance:0 |
(64,) |
+0.0000 |
+5.5464 |
+1.1573 |
res2a_branch2c/kernel:0 |
(1, 1, 64, 256) |
-0.4412 |
+0.3600 |
+0.0411 |
res2a_branch1/kernel:0 |
(1, 1, 64, 256) |
-0.8513 |
+0.7543 |
+0.0699 |
bn2a_branch2c/gamma:0 |
(256,) |
-0.5887 |
+3.2101 |
+0.6259 |
bn2a_branch2c/beta:0 |
(256,) |
-1.1511 |
+1.4415 |
+0.4269 |
bn2a_branch2c/moving_mean:0 |
(256,) |
-4.2796 |
+3.1055 |
+1.0352 |
bn2a_branch2c/moving_variance:0 |
(256,) |
+0.0000 |
+2.6966 |
+0.4085 |
bn2a_branch1/gamma:0 |
(256,) |
+0.2415 |
+3.5354 |
+0.6298 |
bn2a_branch1/beta:0 |
(256,) |
-1.1511 |
+1.4415 |
+0.4269 |
bn2a_branch1/moving_mean:0 |
(256,) |
-8.1191 |
+8.7749 |
+2.0398 |
bn2a_branch1/moving_variance:0 |
(256,) |
+0.0000 |
+10.3201 |
+1.6540 |
res2b_branch2a/kernel:0 |
(1, 1, 256, 64) |
-0.2418 |
+0.2263 |
+0.0358 |
bn2b_branch2a/gamma:0 |
(64,) |
+0.2051 |
+1.7890 |
+0.3852 |
bn2b_branch2a/beta:0 |
(64,) |
-2.0730 |
+1.6836 |
+0.8930 |
bn2b_branch2a/moving_mean:0 |
(64,) |
-1.8157 |
+1.7829 |
+0.7466 |
bn2b_branch2a/moving_variance:0 |
(64,) |
+0.0000 |
+3.2496 |
+0.7830 |
res2b_branch2b/kernel:0 |
(3, 3, 64, 64) |
-0.5190 |
+0.3431 |
+0.0357 |
bn2b_branch2b/gamma:0 |
(64,) |
+0.5190 |
+1.4828 |
+0.2283 |
bn2b_branch2b/beta:0 |
(64,) |
-2.4756 |
+2.7818 |
+1.2069 |
bn2b_branch2b/moving_mean:0 |
(64,) |
-1.8361 |
+0.9368 |
+0.5723 |
bn2b_branch2b/moving_variance:0 |
(64,) |
+0.0938 |
+1.0783 |
+0.2077 |
res2b_branch2c/kernel:0 |
(1, 1, 64, 256) |
-0.3330 |
+0.3228 |
+0.0414 |
bn2b_branch2c/gamma:0 |
(256,) |
-0.0329 |
+1.8095 |
+0.4257 |
bn2b_branch2c/beta:0 |
(256,) |
-1.3059 |
+0.9721 |
+0.3463 |
bn2b_branch2c/moving_mean:0 |
(256,) |
-2.5336 |
+2.1111 |
+0.5033 |
bn2b_branch2c/moving_variance:0 |
(256,) |
+0.0000 |
+0.2187 |
+0.0333 |
res2c_branch2a/kernel:0 |
(1, 1, 256, 64) |
-0.3040 |
+0.2175 |
+0.0412 |
bn2c_branch2a/gamma:0 |
(64,) |
+0.2683 |
+1.8338 |
+0.2863 |
bn2c_branch2a/beta:0 |
(64,) |
-2.0358 |
+0.8512 |
+0.7946 |
bn2c_branch2a/moving_mean:0 |
(64,) |
-4.7340 |
+1.6664 |
+1.2255 |
bn2c_branch2a/moving_variance:0 |
(64,) |
+0.0000 |
+3.4985 |
+0.7644 |
res2c_branch2b/kernel:0 |
(3, 3, 64, 64) |
-0.2020 |
+0.2138 |
+0.0378 |
bn2c_branch2b/gamma:0 |
(64,) |
+0.6155 |
+1.5482 |
+0.2177 |
bn2c_branch2b/beta:0 |
(64,) |
-2.4321 |
+1.8318 |
+0.6352 |
bn2c_branch2b/moving_mean:0 |
(64,) |
-1.4939 |
+0.1422 |
+0.2628 |
bn2c_branch2b/moving_variance:0 |
(64,) |
+0.2278 |
+2.0831 |
+0.3304 |
res2c_branch2c/kernel:0 |
(1, 1, 64, 256) |
-0.2842 |
+0.2529 |
+0.0430 |
bn2c_branch2c/gamma:0 |
(256,) |
-0.0200 |
+2.3871 |
+0.5297 |
bn2c_branch2c/beta:0 |
(256,) |
-1.6989 |
+1.1085 |
+0.4321 |
bn2c_branch2c/moving_mean:0 |
(256,) |
-1.2794 |
+0.7256 |
+0.2929 |
bn2c_branch2c/moving_variance:0 |
(256,) |
+0.0010 |
+0.7414 |
+0.1125 |
res3a_branch2a/kernel:0 |
(1, 1, 256, 128) |
-0.5027 |
+0.6187 |
+0.0304 |
bn3a_branch2a/gamma:0 |
(128,) |
+0.4905 |
+1.3262 |
+0.1895 |
bn3a_branch2a/beta:0 |
(128,) |
-1.8565 |
+2.5853 |
+0.7641 |
bn3a_branch2a/moving_mean:0 |
(128,) |
-4.2267 |
+2.1703 |
+0.9005 |
bn3a_branch2a/moving_variance:0 |
(128,) |
+0.0545 |
+8.9011 |
+1.2696 |
res3a_branch2b/kernel:0 |
(3, 3, 128, 128) |
-0.3236 |
+0.4518 |
+0.0223 |
bn3a_branch2b/gamma:0 |
(128,) |
+0.4706 |
+1.8430 |
+0.2200 |
bn3a_branch2b/beta:0 |
(128,) |
-1.9615 |
+1.9157 |
+0.7933 |
bn3a_branch2b/moving_mean:0 |
(128,) |
-6.0335 |
+3.2213 |
+1.9778 |
bn3a_branch2b/moving_variance:0 |
(128,) |
+0.0001 |
+6.6136 |
+0.8450 |
res3a_branch2c/kernel:0 |
(1, 1, 128, 512) |
-0.4927 |
+0.3402 |
+0.0283 |
res3a_branch1/kernel:0 |
(1, 1, 256, 512) |
-0.4507 |
+0.6643 |
+0.0290 |
bn3a_branch2c/gamma:0 |
(512,) |
-0.0033 |
+3.7310 |
+0.6223 |
bn3a_branch2c/beta:0 |
(512,) |
-0.9694 |
+1.4581 |
+0.3727 |
bn3a_branch2c/moving_mean:0 |
(512,) |
-1.5891 |
+1.4301 |
+0.3907 |
bn3a_branch2c/moving_variance:0 |
(512,) |
+0.0002 |
+0.8632 |
+0.1073 |
bn3a_branch1/gamma:0 |
(512,) |
-0.0138 |
+2.7207 |
+0.4812 |
bn3a_branch1/beta:0 |
(512,) |
-0.9694 |
+1.4580 |
+0.3727 |
bn3a_branch1/moving_mean:0 |
(512,) |
-3.7382 |
+2.8448 |
+0.8043 |
bn3a_branch1/moving_variance:0 |
(512,) |
+0.0029 |
+5.7492 |
+0.6063 |
res3b_branch2a/kernel:0 |
(1, 1, 512, 128) |
-0.1992 |
+0.1954 |
+0.0252 |
bn3b_branch2a/gamma:0 |
(128,) |
+0.5946 |
+1.5472 |
+0.1807 |
bn3b_branch2a/beta:0 |
(128,) |
-3.9918 |
+0.6877 |
+0.6492 |
bn3b_branch2a/moving_mean:0 |
(128,) |
-3.0865 |
+1.0082 |
+0.6388 |
bn3b_branch2a/moving_variance:0 |
(128,) |
+0.2999 |
+3.6467 |
+0.6298 |
res3b_branch2b/kernel:0 |
(3, 3, 128, 128) |
-0.2305 |
+0.2760 |
+0.0241 |
bn3b_branch2b/gamma:0 |
(128,) |
+0.4863 |
+1.5054 |
+0.2365 |
bn3b_branch2b/beta:0 |
(128,) |
-2.4436 |
+1.4355 |
+0.6833 |
bn3b_branch2b/moving_mean:0 |
(128,) |
-2.1539 |
+1.4636 |
+0.5130 |
bn3b_branch2b/moving_variance:0 |
(128,) |
+0.0961 |
+1.6067 |
+0.2474 |
res3b_branch2c/kernel:0 |
(1, 1, 128, 512) |
-0.3111 |
+0.4652 |
+0.0288 |
bn3b_branch2c/gamma:0 |
(512,) |
-0.0367 |
+2.0281 |
+0.4083 |
bn3b_branch2c/beta:0 |
(512,) |
-1.5916 |
+1.1728 |
+0.3779 |
bn3b_branch2c/moving_mean:0 |
(512,) |
-1.0827 |
+0.6886 |
+0.2301 |
bn3b_branch2c/moving_variance:0 |
(512,) |
+0.0002 |
+0.2121 |
+0.0303 |
res3c_branch2a/kernel:0 |
(1, 1, 512, 128) |
-0.2663 |
+0.2643 |
+0.0284 |
bn3c_branch2a/gamma:0 |
(128,) |
+0.5964 |
+1.5047 |
+0.1916 |
bn3c_branch2a/beta:0 |
(128,) |
-2.8335 |
+0.7305 |
+0.5454 |
bn3c_branch2a/moving_mean:0 |
(128,) |
-3.0245 |
+1.7478 |
+0.8335 |
bn3c_branch2a/moving_variance:0 |
(128,) |
+0.2705 |
+3.8971 |
+0.7585 |
res3c_branch2b/kernel:0 |
(3, 3, 128, 128) |
-0.2296 |
+0.1968 |
+0.0233 |
bn3c_branch2b/gamma:0 |
(128,) |
+0.4471 |
+1.5901 |
+0.2878 |
bn3c_branch2b/beta:0 |
(128,) |
-1.4295 |
+1.3293 |
+0.5597 |
bn3c_branch2b/moving_mean:0 |
(128,) |
-1.0368 |
+0.7158 |
+0.2785 |
bn3c_branch2b/moving_variance:0 |
(128,) |
+0.1252 |
+0.9441 |
+0.1439 |
res3c_branch2c/kernel:0 |
(1, 1, 128, 512) |
-0.3068 |
+0.3730 |
+0.0263 |
bn3c_branch2c/gamma:0 |
(512,) |
-0.0337 |
+1.9127 |
+0.3803 |
bn3c_branch2c/beta:0 |
(512,) |
-1.5568 |
+0.8346 |
+0.3645 |
bn3c_branch2c/moving_mean:0 |
(512,) |
-0.8692 |
+0.7091 |
+0.1843 |
bn3c_branch2c/moving_variance:0 |
(512,) |
+0.0002 |
+0.1747 |
+0.0270 |
res3d_branch2a/kernel:0 |
(1, 1, 512, 128) |
-0.2611 |
+0.2868 |
+0.0307 |
bn3d_branch2a/gamma:0 |
(128,) |
+0.6513 |
+1.4620 |
+0.1939 |
bn3d_branch2a/beta:0 |
(128,) |
-3.0044 |
+0.6187 |
+0.6454 |
bn3d_branch2a/moving_mean:0 |
(128,) |
-3.7891 |
+2.2792 |
+0.9724 |
bn3d_branch2a/moving_variance:0 |
(128,) |
+0.0035 |
+3.3270 |
+0.5634 |
res3d_branch2b/kernel:0 |
(3, 3, 128, 128) |
-0.1610 |
+0.2406 |
+0.0237 |
bn3d_branch2b/gamma:0 |
(128,) |
+0.6456 |
+3.2960 |
+0.2932 |
bn3d_branch2b/beta:0 |
(128,) |
-1.6672 |
+1.5725 |
+0.5648 |
bn3d_branch2b/moving_mean:0 |
(128,) |
-1.0483 |
+0.3162 |
+0.2877 |
bn3d_branch2b/moving_variance:0 |
(128,) |
+0.2354 |
+1.6038 |
+0.2114 |
res3d_branch2c/kernel:0 |
(1, 1, 128, 512) |
-0.2424 |
+0.3360 |
+0.0271 |
bn3d_branch2c/gamma:0 |
(512,) |
-0.0229 |
+1.9388 |
+0.5210 |
bn3d_branch2c/beta:0 |
(512,) |
-1.0656 |
+0.9844 |
+0.2739 |
bn3d_branch2c/moving_mean:0 |
(512,) |
-1.1224 |
+0.4736 |
+0.2424 |
bn3d_branch2c/moving_variance:0 |
(512,) |
+0.0002 |
+0.4452 |
+0.0605 |
res4a_branch2a/kernel:0 |
(1, 1, 512, 256) |
-0.2850 |
+0.2532 |
+0.0148 |
bn4a_branch2a/gamma:0 |
(256,) |
+0.4807 |
+1.4740 |
+0.1509 |
bn4a_branch2a/beta:0 |
(256,) |
-1.9598 |
+1.1296 |
+0.3918 |
bn4a_branch2a/moving_mean:0 |
(256,) |
-3.6537 |
+1.2955 |
+0.6511 |
bn4a_branch2a/moving_variance:0 |
(256,) |
+0.0614 |
+2.4605 |
+0.3051 |
res4a_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1724 |
+0.1962 |
+0.0106 |
bn4a_branch2b/gamma:0 |
(256,) |
+0.4749 |
+1.5932 |
+0.2005 |
bn4a_branch2b/beta:0 |
(256,) |
-2.6223 |
+1.1253 |
+0.4850 |
bn4a_branch2b/moving_mean:0 |
(256,) |
-2.6573 |
+3.4857 |
+0.5984 |
bn4a_branch2b/moving_variance:0 |
(256,) |
+0.1394 |
+1.4291 |
+0.2191 |
res4a_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.2826 |
+0.1895 |
+0.0140 |
res4a_branch1/kernel:0 |
(1, 1, 512, 1024) |
-0.3567 |
+0.3337 |
+0.0158 |
bn4a_branch2c/gamma:0 |
(1024,) |
-0.0100 |
+2.8427 |
+0.4587 |
bn4a_branch2c/beta:0 |
(1024,) |
-0.5290 |
+2.0636 |
+0.2888 |
bn4a_branch2c/moving_mean:0 |
(1024,) |
-0.4885 |
+0.2798 |
+0.0831 |
bn4a_branch2c/moving_variance:0 |
(1024,) |
+0.0000 |
+0.1206 |
+0.0119 |
bn4a_branch1/gamma:0 |
(1024,) |
+0.1721 |
+4.0220 |
+0.7190 |
bn4a_branch1/beta:0 |
(1024,) |
-0.5290 |
+2.0638 |
+0.2888 |
bn4a_branch1/moving_mean:0 |
(1024,) |
-5.8239 |
+3.2843 |
+0.9039 |
bn4a_branch1/moving_variance:0 |
(1024,) |
+0.0546 |
+8.5205 |
+0.6964 |
res4b_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1260 |
+0.1778 |
+0.0081 |
bn4b_branch2a/gamma:0 |
(256,) |
+0.4198 |
+1.6067 |
+0.1885 |
bn4b_branch2a/beta:0 |
(256,) |
-2.2254 |
+2.0613 |
+0.4898 |
bn4b_branch2a/moving_mean:0 |
(256,) |
-4.6812 |
+2.7681 |
+1.1843 |
bn4b_branch2a/moving_variance:0 |
(256,) |
+0.1327 |
+11.9923 |
+1.3851 |
res4b_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0965 |
+0.1632 |
+0.0072 |
bn4b_branch2b/gamma:0 |
(256,) |
+0.5049 |
+1.4772 |
+0.1899 |
bn4b_branch2b/beta:0 |
(256,) |
-1.6971 |
+0.5928 |
+0.4359 |
bn4b_branch2b/moving_mean:0 |
(256,) |
-5.7095 |
+1.9171 |
+0.8444 |
bn4b_branch2b/moving_variance:0 |
(256,) |
+0.0203 |
+1.3132 |
+0.2172 |
res4b_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1962 |
+0.2793 |
+0.0103 |
bn4b_branch2c/gamma:0 |
(1024,) |
-0.0006 |
+3.1835 |
+0.3656 |
bn4b_branch2c/beta:0 |
(1024,) |
-1.0684 |
+0.9525 |
+0.1818 |
bn4b_branch2c/moving_mean:0 |
(1024,) |
-0.4443 |
+0.4752 |
+0.0943 |
bn4b_branch2c/moving_variance:0 |
(1024,) |
+0.0000 |
+0.1888 |
+0.0161 |
res4c_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.0990 |
+0.1245 |
+0.0082 |
bn4c_branch2a/gamma:0 |
(256,) |
+0.5761 |
+1.7694 |
+0.1421 |
bn4c_branch2a/beta:0 |
(256,) |
-0.9332 |
+1.3302 |
+0.3766 |
bn4c_branch2a/moving_mean:0 |
(256,) |
-4.0562 |
+2.6203 |
+1.2418 |
bn4c_branch2a/moving_variance:0 |
(256,) |
+0.3526 |
+5.5460 |
+0.6766 |
res4c_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0971 |
+0.1085 |
+0.0074 |
bn4c_branch2b/gamma:0 |
(256,) |
+0.5058 |
+1.2290 |
+0.1501 |
bn4c_branch2b/beta:0 |
(256,) |
-1.4553 |
+0.5811 |
+0.3399 |
bn4c_branch2b/moving_mean:0 |
(256,) |
-3.4174 |
+1.7898 |
+0.5966 |
bn4c_branch2b/moving_variance:0 |
(256,) |
+0.0730 |
+1.5945 |
+0.1712 |
res4c_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1343 |
+0.1620 |
+0.0107 |
bn4c_branch2c/gamma:0 |
(1024,) |
+0.0047 |
+2.2900 |
+0.2671 |
bn4c_branch2c/beta:0 |
(1024,) |
-1.1121 |
+0.7399 |
+0.1807 |
bn4c_branch2c/moving_mean:0 |
(1024,) |
-0.3355 |
+0.1449 |
+0.0609 |
bn4c_branch2c/moving_variance:0 |
(1024,) |
+0.0003 |
+0.0969 |
+0.0076 |
res4d_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1154 |
+0.1464 |
+0.0103 |
bn4d_branch2a/gamma:0 |
(256,) |
+0.5715 |
+1.4526 |
+0.1505 |
bn4d_branch2a/beta:0 |
(256,) |
-1.3573 |
+0.4802 |
+0.3064 |
bn4d_branch2a/moving_mean:0 |
(256,) |
-3.2371 |
+2.2156 |
+0.9378 |
bn4d_branch2a/moving_variance:0 |
(256,) |
+0.3515 |
+5.9965 |
+0.7573 |
res4d_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0995 |
+0.0993 |
+0.0087 |
bn4d_branch2b/gamma:0 |
(256,) |
+0.4295 |
+1.5526 |
+0.1616 |
bn4d_branch2b/beta:0 |
(256,) |
-1.4477 |
+0.3874 |
+0.2842 |
bn4d_branch2b/moving_mean:0 |
(256,) |
-1.4094 |
+0.7436 |
+0.2812 |
bn4d_branch2b/moving_variance:0 |
(256,) |
+0.0523 |
+0.4509 |
+0.0769 |
res4d_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.2408 |
+0.1240 |
+0.0118 |
bn4d_branch2c/gamma:0 |
(1024,) |
+0.0455 |
+2.8707 |
+0.3316 |
bn4d_branch2c/beta:0 |
(1024,) |
-1.3654 |
+0.5976 |
+0.2313 |
bn4d_branch2c/moving_mean:0 |
(1024,) |
-0.3255 |
+0.1030 |
+0.0535 |
bn4d_branch2c/moving_variance:0 |
(1024,) |
+0.0017 |
+0.1031 |
+0.0077 |
res4e_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1464 |
+0.1125 |
+0.0101 |
bn4e_branch2a/gamma:0 |
(256,) |
+0.6457 |
+1.3797 |
+0.1243 |
bn4e_branch2a/beta:0 |
(256,) |
-1.0967 |
+0.3581 |
+0.2712 |
bn4e_branch2a/moving_mean:0 |
(256,) |
-4.3375 |
+1.8791 |
+1.1414 |
bn4e_branch2a/moving_variance:0 |
(256,) |
+0.3798 |
+4.6768 |
+0.6343 |
res4e_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0862 |
+0.0903 |
+0.0090 |
bn4e_branch2b/gamma:0 |
(256,) |
+0.5497 |
+1.2982 |
+0.1328 |
bn4e_branch2b/beta:0 |
(256,) |
-1.2916 |
+0.2223 |
+0.2549 |
bn4e_branch2b/moving_mean:0 |
(256,) |
-1.6195 |
+0.8106 |
+0.3150 |
bn4e_branch2b/moving_variance:0 |
(256,) |
+0.0594 |
+0.9789 |
+0.1007 |
res4e_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.2030 |
+0.1746 |
+0.0119 |
bn4e_branch2c/gamma:0 |
(1024,) |
+0.0241 |
+1.7471 |
+0.1844 |
bn4e_branch2c/beta:0 |
(1024,) |
-1.0605 |
+0.4113 |
+0.1782 |
bn4e_branch2c/moving_mean:0 |
(1024,) |
-0.2640 |
+0.1132 |
+0.0421 |
bn4e_branch2c/moving_variance:0 |
(1024,) |
+0.0009 |
+0.0492 |
+0.0041 |
res4f_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.0842 |
+0.1227 |
+0.0105 |
bn4f_branch2a/gamma:0 |
(256,) |
+0.7024 |
+1.3934 |
+0.1006 |
bn4f_branch2a/beta:0 |
(256,) |
-1.1660 |
+0.3933 |
+0.2485 |
bn4f_branch2a/moving_mean:0 |
(256,) |
-4.4642 |
+2.1927 |
+1.1421 |
bn4f_branch2a/moving_variance:0 |
(256,) |
+0.4538 |
+4.7501 |
+0.7294 |
res4f_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1032 |
+0.0997 |
+0.0095 |
bn4f_branch2b/gamma:0 |
(256,) |
+0.4258 |
+1.2521 |
+0.1110 |
bn4f_branch2b/beta:0 |
(256,) |
-1.4425 |
+0.5213 |
+0.2464 |
bn4f_branch2b/moving_mean:0 |
(256,) |
-1.8044 |
+1.5505 |
+0.3778 |
bn4f_branch2b/moving_variance:0 |
(256,) |
+0.0635 |
+0.6795 |
+0.0933 |
res4f_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1423 |
+0.1278 |
+0.0119 |
bn4f_branch2c/gamma:0 |
(1024,) |
+0.1776 |
+1.6305 |
+0.1749 |
bn4f_branch2c/beta:0 |
(1024,) |
-0.9891 |
+0.3002 |
+0.1423 |
bn4f_branch2c/moving_mean:0 |
(1024,) |
-0.1586 |
+0.0747 |
+0.0354 |
bn4f_branch2c/moving_variance:0 |
(1024,) |
+0.0012 |
+0.0210 |
+0.0024 |
res4g_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1148 |
+0.2416 |
+0.0107 |
bn4g_branch2a/gamma:0 |
(256,) |
+0.6074 |
+1.2107 |
+0.1073 |
bn4g_branch2a/beta:0 |
(256,) |
-1.2790 |
+0.2364 |
+0.2842 |
bn4g_branch2a/moving_mean:0 |
(256,) |
-4.3445 |
+1.4500 |
+1.0834 |
bn4g_branch2a/moving_variance:0 |
(256,) |
+0.3768 |
+3.8029 |
+0.7079 |
res4g_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1280 |
+0.1199 |
+0.0097 |
bn4g_branch2b/gamma:0 |
(256,) |
+0.4760 |
+1.7497 |
+0.1351 |
bn4g_branch2b/beta:0 |
(256,) |
-1.2725 |
+0.1908 |
+0.2716 |
bn4g_branch2b/moving_mean:0 |
(256,) |
-1.1725 |
+1.0331 |
+0.2961 |
bn4g_branch2b/moving_variance:0 |
(256,) |
+0.0579 |
+0.7416 |
+0.0856 |
res4g_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1498 |
+0.2285 |
+0.0118 |
bn4g_branch2c/gamma:0 |
(1024,) |
+0.0908 |
+1.8260 |
+0.1987 |
bn4g_branch2c/beta:0 |
(1024,) |
-0.9102 |
+0.2949 |
+0.1424 |
bn4g_branch2c/moving_mean:0 |
(1024,) |
-0.1887 |
+0.0784 |
+0.0394 |
bn4g_branch2c/moving_variance:0 |
(1024,) |
+0.0013 |
+0.0316 |
+0.0033 |
res4h_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1305 |
+0.1624 |
+0.0116 |
bn4h_branch2a/gamma:0 |
(256,) |
+0.6257 |
+1.2189 |
+0.0991 |
bn4h_branch2a/beta:0 |
(256,) |
-1.4250 |
+0.0732 |
+0.2633 |
bn4h_branch2a/moving_mean:0 |
(256,) |
-3.7871 |
+2.4121 |
+0.9370 |
bn4h_branch2a/moving_variance:0 |
(256,) |
+0.5296 |
+3.3483 |
+0.5827 |
res4h_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0986 |
+0.1224 |
+0.0102 |
bn4h_branch2b/gamma:0 |
(256,) |
+0.4840 |
+1.4915 |
+0.1486 |
bn4h_branch2b/beta:0 |
(256,) |
-1.5969 |
+0.4351 |
+0.2542 |
bn4h_branch2b/moving_mean:0 |
(256,) |
-1.0446 |
+1.1061 |
+0.2066 |
bn4h_branch2b/moving_variance:0 |
(256,) |
+0.0492 |
+0.5152 |
+0.0675 |
res4h_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1463 |
+0.2364 |
+0.0120 |
bn4h_branch2c/gamma:0 |
(1024,) |
+0.0535 |
+2.4894 |
+0.2982 |
bn4h_branch2c/beta:0 |
(1024,) |
-0.8032 |
+0.3345 |
+0.1533 |
bn4h_branch2c/moving_mean:0 |
(1024,) |
-0.2073 |
+0.1215 |
+0.0407 |
bn4h_branch2c/moving_variance:0 |
(1024,) |
+0.0012 |
+0.0485 |
+0.0043 |
res4i_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1310 |
+0.2966 |
+0.0130 |
bn4i_branch2a/gamma:0 |
(256,) |
+0.3535 |
+1.0589 |
+0.1278 |
bn4i_branch2a/beta:0 |
(256,) |
-1.4845 |
+0.4568 |
+0.2795 |
bn4i_branch2a/moving_mean:0 |
(256,) |
-4.1849 |
+2.5485 |
+1.1041 |
bn4i_branch2a/moving_variance:0 |
(256,) |
+0.7884 |
+7.4350 |
+0.6603 |
res4i_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1289 |
+0.1534 |
+0.0092 |
bn4i_branch2b/gamma:0 |
(256,) |
+0.5686 |
+1.6406 |
+0.1422 |
bn4i_branch2b/beta:0 |
(256,) |
-1.4987 |
+0.4807 |
+0.2660 |
bn4i_branch2b/moving_mean:0 |
(256,) |
-0.5127 |
+0.1199 |
+0.0935 |
bn4i_branch2b/moving_variance:0 |
(256,) |
+0.0143 |
+0.1193 |
+0.0159 |
res4i_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1553 |
+0.1522 |
+0.0118 |
bn4i_branch2c/gamma:0 |
(1024,) |
+0.0405 |
+2.1795 |
+0.1866 |
bn4i_branch2c/beta:0 |
(1024,) |
-0.5968 |
+0.7084 |
+0.1265 |
bn4i_branch2c/moving_mean:0 |
(1024,) |
-0.4519 |
+0.1328 |
+0.0659 |
bn4i_branch2c/moving_variance:0 |
(1024,) |
+0.0008 |
+0.0992 |
+0.0064 |
res4j_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1212 |
+0.1714 |
+0.0124 |
bn4j_branch2a/gamma:0 |
(256,) |
+0.5074 |
+1.2941 |
+0.1164 |
bn4j_branch2a/beta:0 |
(256,) |
-1.9232 |
+0.2171 |
+0.2896 |
bn4j_branch2a/moving_mean:0 |
(256,) |
-4.7605 |
+1.3667 |
+0.9790 |
bn4j_branch2a/moving_variance:0 |
(256,) |
+0.8111 |
+8.3345 |
+0.7015 |
res4j_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1000 |
+0.2422 |
+0.0102 |
bn4j_branch2b/gamma:0 |
(256,) |
+0.4069 |
+1.4642 |
+0.1343 |
bn4j_branch2b/beta:0 |
(256,) |
-1.9635 |
+0.4987 |
+0.3003 |
bn4j_branch2b/moving_mean:0 |
(256,) |
-1.0420 |
+0.6202 |
+0.2047 |
bn4j_branch2b/moving_variance:0 |
(256,) |
+0.0464 |
+0.5519 |
+0.0491 |
res4j_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1389 |
+0.1597 |
+0.0118 |
bn4j_branch2c/gamma:0 |
(1024,) |
+0.0293 |
+2.1061 |
+0.1991 |
bn4j_branch2c/beta:0 |
(1024,) |
-0.8361 |
+0.1735 |
+0.1254 |
bn4j_branch2c/moving_mean:0 |
(1024,) |
-0.2061 |
+0.0772 |
+0.0375 |
bn4j_branch2c/moving_variance:0 |
(1024,) |
+0.0003 |
+0.0274 |
+0.0028 |
res4k_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1359 |
+0.1878 |
+0.0112 |
bn4k_branch2a/gamma:0 |
(256,) |
+0.5420 |
+1.2074 |
+0.1235 |
bn4k_branch2a/beta:0 |
(256,) |
-1.7435 |
+0.3985 |
+0.3122 |
bn4k_branch2a/moving_mean:0 |
(256,) |
-6.0315 |
+1.7842 |
+1.1139 |
bn4k_branch2a/moving_variance:0 |
(256,) |
+0.3504 |
+4.6503 |
+0.6216 |
res4k_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0792 |
+0.1220 |
+0.0093 |
bn4k_branch2b/gamma:0 |
(256,) |
+0.4983 |
+1.2338 |
+0.1261 |
bn4k_branch2b/beta:0 |
(256,) |
-1.2916 |
+0.1997 |
+0.2615 |
bn4k_branch2b/moving_mean:0 |
(256,) |
-1.0697 |
+1.5169 |
+0.3087 |
bn4k_branch2b/moving_variance:0 |
(256,) |
+0.0201 |
+0.4110 |
+0.0620 |
res4k_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1248 |
+0.2098 |
+0.0111 |
bn4k_branch2c/gamma:0 |
(1024,) |
+0.1164 |
+2.0104 |
+0.2095 |
bn4k_branch2c/beta:0 |
(1024,) |
-1.6254 |
+0.1871 |
+0.1615 |
bn4k_branch2c/moving_mean:0 |
(1024,) |
-0.1643 |
+0.0819 |
+0.0371 |
bn4k_branch2c/moving_variance:0 |
(1024,) |
+0.0018 |
+0.0433 |
+0.0044 |
res4l_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.2063 |
+0.1837 |
+0.0132 |
bn4l_branch2a/gamma:0 |
(256,) |
+0.4153 |
+1.5392 |
+0.1226 |
bn4l_branch2a/beta:0 |
(256,) |
-1.8618 |
+0.3083 |
+0.3002 |
bn4l_branch2a/moving_mean:0 |
(256,) |
-4.3532 |
+1.4638 |
+1.0180 |
bn4l_branch2a/moving_variance:0 |
(256,) |
+0.6372 |
+5.7646 |
+0.7036 |
res4l_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1077 |
+0.1703 |
+0.0099 |
bn4l_branch2b/gamma:0 |
(256,) |
+0.3988 |
+1.3548 |
+0.1309 |
bn4l_branch2b/beta:0 |
(256,) |
-1.4917 |
+0.4846 |
+0.2733 |
bn4l_branch2b/moving_mean:0 |
(256,) |
-0.4929 |
+0.3995 |
+0.1252 |
bn4l_branch2b/moving_variance:0 |
(256,) |
+0.0217 |
+0.2759 |
+0.0259 |
res4l_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1198 |
+0.1658 |
+0.0120 |
bn4l_branch2c/gamma:0 |
(1024,) |
+0.0792 |
+1.6846 |
+0.1774 |
bn4l_branch2c/beta:0 |
(1024,) |
-1.0420 |
+0.7085 |
+0.1541 |
bn4l_branch2c/moving_mean:0 |
(1024,) |
-0.1533 |
+0.0933 |
+0.0373 |
bn4l_branch2c/moving_variance:0 |
(1024,) |
+0.0009 |
+0.0339 |
+0.0026 |
res4m_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.0796 |
+0.1565 |
+0.0116 |
bn4m_branch2a/gamma:0 |
(256,) |
+0.5385 |
+1.1934 |
+0.0998 |
bn4m_branch2a/beta:0 |
(256,) |
-1.3115 |
+0.3087 |
+0.2261 |
bn4m_branch2a/moving_mean:0 |
(256,) |
-5.8896 |
+1.3802 |
+1.0426 |
bn4m_branch2a/moving_variance:0 |
(256,) |
+0.5695 |
+7.6590 |
+0.7444 |
res4m_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1025 |
+0.1319 |
+0.0090 |
bn4m_branch2b/gamma:0 |
(256,) |
+0.5824 |
+1.2019 |
+0.1020 |
bn4m_branch2b/beta:0 |
(256,) |
-1.3820 |
+0.1980 |
+0.2375 |
bn4m_branch2b/moving_mean:0 |
(256,) |
-0.7877 |
+0.6563 |
+0.1876 |
bn4m_branch2b/moving_variance:0 |
(256,) |
+0.0295 |
+0.3663 |
+0.0473 |
res4m_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1435 |
+0.1559 |
+0.0111 |
bn4m_branch2c/gamma:0 |
(1024,) |
+0.1877 |
+1.8117 |
+0.1711 |
bn4m_branch2c/beta:0 |
(1024,) |
-0.7704 |
+0.5870 |
+0.1488 |
bn4m_branch2c/moving_mean:0 |
(1024,) |
-0.2008 |
+0.0926 |
+0.0429 |
bn4m_branch2c/moving_variance:0 |
(1024,) |
+0.0013 |
+0.0343 |
+0.0039 |
res4n_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1173 |
+0.1577 |
+0.0126 |
bn4n_branch2a/gamma:0 |
(256,) |
+0.4684 |
+1.0960 |
+0.1128 |
bn4n_branch2a/beta:0 |
(256,) |
-1.2844 |
+0.0426 |
+0.2344 |
bn4n_branch2a/moving_mean:0 |
(256,) |
-3.2392 |
+1.7882 |
+0.8253 |
bn4n_branch2a/moving_variance:0 |
(256,) |
+0.6329 |
+3.4732 |
+0.4616 |
res4n_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1209 |
+0.1524 |
+0.0087 |
bn4n_branch2b/gamma:0 |
(256,) |
+0.4896 |
+1.2047 |
+0.1105 |
bn4n_branch2b/beta:0 |
(256,) |
-1.0426 |
+0.6021 |
+0.2205 |
bn4n_branch2b/moving_mean:0 |
(256,) |
-0.3883 |
+0.1123 |
+0.0881 |
bn4n_branch2b/moving_variance:0 |
(256,) |
+0.0143 |
+0.2724 |
+0.0217 |
res4n_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.0969 |
+0.1517 |
+0.0107 |
bn4n_branch2c/gamma:0 |
(1024,) |
+0.1913 |
+1.6900 |
+0.1242 |
bn4n_branch2c/beta:0 |
(1024,) |
-0.7635 |
+0.6491 |
+0.1329 |
bn4n_branch2c/moving_mean:0 |
(1024,) |
-0.2299 |
+0.1080 |
+0.0471 |
bn4n_branch2c/moving_variance:0 |
(1024,) |
+0.0021 |
+0.0429 |
+0.0041 |
res4o_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.0868 |
+0.1276 |
+0.0122 |
bn4o_branch2a/gamma:0 |
(256,) |
+0.4140 |
+1.0878 |
+0.1046 |
bn4o_branch2a/beta:0 |
(256,) |
-1.5212 |
+0.1588 |
+0.2378 |
bn4o_branch2a/moving_mean:0 |
(256,) |
-6.5676 |
+1.6475 |
+1.1866 |
bn4o_branch2a/moving_variance:0 |
(256,) |
+0.6190 |
+5.9674 |
+0.6751 |
res4o_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0956 |
+0.1297 |
+0.0088 |
bn4o_branch2b/gamma:0 |
(256,) |
+0.5295 |
+1.2251 |
+0.1097 |
bn4o_branch2b/beta:0 |
(256,) |
-1.2628 |
+0.4158 |
+0.2264 |
bn4o_branch2b/moving_mean:0 |
(256,) |
-0.4420 |
+0.3259 |
+0.1114 |
bn4o_branch2b/moving_variance:0 |
(256,) |
+0.0193 |
+0.1740 |
+0.0210 |
res4o_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1526 |
+0.1561 |
+0.0108 |
bn4o_branch2c/gamma:0 |
(1024,) |
+0.2372 |
+1.9252 |
+0.1541 |
bn4o_branch2c/beta:0 |
(1024,) |
-0.8091 |
+0.5670 |
+0.1401 |
bn4o_branch2c/moving_mean:0 |
(1024,) |
-0.2384 |
+0.1076 |
+0.0495 |
bn4o_branch2c/moving_variance:0 |
(1024,) |
+0.0016 |
+0.0486 |
+0.0047 |
res4p_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1428 |
+0.1984 |
+0.0135 |
bn4p_branch2a/gamma:0 |
(256,) |
+0.5017 |
+1.0527 |
+0.0912 |
bn4p_branch2a/beta:0 |
(256,) |
-1.4882 |
+0.0455 |
+0.2393 |
bn4p_branch2a/moving_mean:0 |
(256,) |
-3.1050 |
+2.3637 |
+0.9707 |
bn4p_branch2a/moving_variance:0 |
(256,) |
+0.7623 |
+3.6884 |
+0.5522 |
res4p_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.0858 |
+0.1100 |
+0.0100 |
bn4p_branch2b/gamma:0 |
(256,) |
+0.4397 |
+1.4020 |
+0.1318 |
bn4p_branch2b/beta:0 |
(256,) |
-1.4270 |
+0.4049 |
+0.2497 |
bn4p_branch2b/moving_mean:0 |
(256,) |
-0.4054 |
+0.3653 |
+0.1037 |
bn4p_branch2b/moving_variance:0 |
(256,) |
+0.0251 |
+0.1553 |
+0.0220 |
res4p_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1097 |
+0.1687 |
+0.0119 |
bn4p_branch2c/gamma:0 |
(1024,) |
+0.1811 |
+1.7263 |
+0.1962 |
bn4p_branch2c/beta:0 |
(1024,) |
-1.0450 |
+0.3895 |
+0.1635 |
bn4p_branch2c/moving_mean:0 |
(1024,) |
-0.2053 |
+0.1271 |
+0.0407 |
bn4p_branch2c/moving_variance:0 |
(1024,) |
+0.0015 |
+0.0479 |
+0.0040 |
res4q_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1232 |
+0.2498 |
+0.0136 |
bn4q_branch2a/gamma:0 |
(256,) |
+0.3415 |
+1.0128 |
+0.1070 |
bn4q_branch2a/beta:0 |
(256,) |
-1.5989 |
+0.3609 |
+0.2903 |
bn4q_branch2a/moving_mean:0 |
(256,) |
-5.2214 |
+2.3356 |
+1.1035 |
bn4q_branch2a/moving_variance:0 |
(256,) |
+0.6609 |
+11.6783 |
+0.9515 |
res4q_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1798 |
+0.1955 |
+0.0088 |
bn4q_branch2b/gamma:0 |
(256,) |
+0.6543 |
+1.4769 |
+0.1200 |
bn4q_branch2b/beta:0 |
(256,) |
-1.1978 |
+0.3759 |
+0.2500 |
bn4q_branch2b/moving_mean:0 |
(256,) |
-0.3519 |
+0.1123 |
+0.0780 |
bn4q_branch2b/moving_variance:0 |
(256,) |
+0.0133 |
+0.1143 |
+0.0136 |
res4q_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1707 |
+0.1696 |
+0.0116 |
bn4q_branch2c/gamma:0 |
(1024,) |
+0.0371 |
+2.1323 |
+0.2144 |
bn4q_branch2c/beta:0 |
(1024,) |
-0.7875 |
+0.3563 |
+0.1508 |
bn4q_branch2c/moving_mean:0 |
(1024,) |
-0.3719 |
+0.2027 |
+0.0712 |
bn4q_branch2c/moving_variance:0 |
(1024,) |
+0.0013 |
+0.0541 |
+0.0063 |
res4r_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1752 |
+0.2489 |
+0.0135 |
bn4r_branch2a/gamma:0 |
(256,) |
+0.2799 |
+0.9274 |
+0.1076 |
bn4r_branch2a/beta:0 |
(256,) |
-1.3579 |
+0.2758 |
+0.2674 |
bn4r_branch2a/moving_mean:0 |
(256,) |
-2.7110 |
+3.0688 |
+0.9259 |
bn4r_branch2a/moving_variance:0 |
(256,) |
+0.8098 |
+9.7240 |
+0.7793 |
res4r_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1313 |
+0.1872 |
+0.0085 |
bn4r_branch2b/gamma:0 |
(256,) |
+0.5145 |
+1.4675 |
+0.1384 |
bn4r_branch2b/beta:0 |
(256,) |
-0.9184 |
+0.6886 |
+0.2130 |
bn4r_branch2b/moving_mean:0 |
(256,) |
-0.2939 |
+0.1038 |
+0.0677 |
bn4r_branch2b/moving_variance:0 |
(256,) |
+0.0066 |
+0.0804 |
+0.0106 |
res4r_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.0867 |
+0.1725 |
+0.0110 |
bn4r_branch2c/gamma:0 |
(1024,) |
+0.1375 |
+1.7613 |
+0.1524 |
bn4r_branch2c/beta:0 |
(1024,) |
-0.7547 |
+0.3295 |
+0.1355 |
bn4r_branch2c/moving_mean:0 |
(1024,) |
-0.2626 |
+0.1839 |
+0.0649 |
bn4r_branch2c/moving_variance:0 |
(1024,) |
+0.0028 |
+0.0670 |
+0.0051 |
res4s_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1282 |
+0.1822 |
+0.0127 |
bn4s_branch2a/gamma:0 |
(256,) |
+0.3420 |
+0.9798 |
+0.1074 |
bn4s_branch2a/beta:0 |
(256,) |
-1.2975 |
+0.5379 |
+0.2706 |
bn4s_branch2a/moving_mean:0 |
(256,) |
-8.8698 |
+2.0926 |
+1.2141 |
bn4s_branch2a/moving_variance:0 |
(256,) |
+0.6463 |
+17.2415 |
+1.1652 |
res4s_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.2004 |
+0.1857 |
+0.0084 |
bn4s_branch2b/gamma:0 |
(256,) |
+0.5218 |
+1.2066 |
+0.1056 |
bn4s_branch2b/beta:0 |
(256,) |
-1.1360 |
+0.3336 |
+0.2261 |
bn4s_branch2b/moving_mean:0 |
(256,) |
-0.4850 |
+0.1296 |
+0.0932 |
bn4s_branch2b/moving_variance:0 |
(256,) |
+0.0122 |
+0.0847 |
+0.0115 |
res4s_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1153 |
+0.1679 |
+0.0109 |
bn4s_branch2c/gamma:0 |
(1024,) |
+0.1504 |
+1.7503 |
+0.1436 |
bn4s_branch2c/beta:0 |
(1024,) |
-0.7774 |
+0.4413 |
+0.1241 |
bn4s_branch2c/moving_mean:0 |
(1024,) |
-0.2327 |
+0.1329 |
+0.0533 |
bn4s_branch2c/moving_variance:0 |
(1024,) |
+0.0022 |
+0.0453 |
+0.0037 |
res4t_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1595 |
+0.1765 |
+0.0128 |
bn4t_branch2a/gamma:0 |
(256,) |
+0.4376 |
+1.2511 |
+0.1069 |
bn4t_branch2a/beta:0 |
(256,) |
-1.1352 |
+0.2663 |
+0.2456 |
bn4t_branch2a/moving_mean:0 |
(256,) |
-6.3550 |
+2.2208 |
+1.3414 |
bn4t_branch2a/moving_variance:0 |
(256,) |
+0.7818 |
+5.8100 |
+0.6672 |
res4t_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1327 |
+0.1067 |
+0.0091 |
bn4t_branch2b/gamma:0 |
(256,) |
+0.4616 |
+1.2523 |
+0.1079 |
bn4t_branch2b/beta:0 |
(256,) |
-1.1122 |
+0.6912 |
+0.2212 |
bn4t_branch2b/moving_mean:0 |
(256,) |
-0.8846 |
+0.4358 |
+0.1821 |
bn4t_branch2b/moving_variance:0 |
(256,) |
+0.0364 |
+0.3580 |
+0.0398 |
res4t_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1665 |
+0.1575 |
+0.0114 |
bn4t_branch2c/gamma:0 |
(1024,) |
+0.2199 |
+2.0075 |
+0.1730 |
bn4t_branch2c/beta:0 |
(1024,) |
-0.7963 |
+0.3039 |
+0.1346 |
bn4t_branch2c/moving_mean:0 |
(1024,) |
-0.2121 |
+0.1756 |
+0.0493 |
bn4t_branch2c/moving_variance:0 |
(1024,) |
+0.0014 |
+0.0391 |
+0.0036 |
res4u_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1065 |
+0.1518 |
+0.0119 |
bn4u_branch2a/gamma:0 |
(256,) |
+0.2817 |
+1.1194 |
+0.1175 |
bn4u_branch2a/beta:0 |
(256,) |
-1.3112 |
+0.5442 |
+0.2535 |
bn4u_branch2a/moving_mean:0 |
(256,) |
-9.9501 |
+2.8899 |
+1.3347 |
bn4u_branch2a/moving_variance:0 |
(256,) |
+0.4432 |
+12.1801 |
+1.2243 |
res4u_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1258 |
+0.1178 |
+0.0078 |
bn4u_branch2b/gamma:0 |
(256,) |
+0.6214 |
+1.3642 |
+0.1069 |
bn4u_branch2b/beta:0 |
(256,) |
-0.9785 |
+0.4391 |
+0.2048 |
bn4u_branch2b/moving_mean:0 |
(256,) |
-0.5389 |
+0.4149 |
+0.1213 |
bn4u_branch2b/moving_variance:0 |
(256,) |
+0.0170 |
+0.1117 |
+0.0160 |
res4u_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1381 |
+0.1941 |
+0.0103 |
bn4u_branch2c/gamma:0 |
(1024,) |
+0.0992 |
+1.7961 |
+0.1407 |
bn4u_branch2c/beta:0 |
(1024,) |
-0.7827 |
+0.7017 |
+0.1639 |
bn4u_branch2c/moving_mean:0 |
(1024,) |
-0.2808 |
+0.1409 |
+0.0702 |
bn4u_branch2c/moving_variance:0 |
(1024,) |
+0.0023 |
+0.0837 |
+0.0066 |
res4v_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1570 |
+0.2220 |
+0.0123 |
bn4v_branch2a/gamma:0 |
(256,) |
+0.3942 |
+1.0195 |
+0.0944 |
bn4v_branch2a/beta:0 |
(256,) |
-1.2374 |
+0.4526 |
+0.2716 |
bn4v_branch2a/moving_mean:0 |
(256,) |
-6.7398 |
+2.1281 |
+1.2705 |
bn4v_branch2a/moving_variance:0 |
(256,) |
+0.6142 |
+6.2192 |
+0.7720 |
res4v_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1412 |
+0.1655 |
+0.0083 |
bn4v_branch2b/gamma:0 |
(256,) |
+0.6196 |
+1.1648 |
+0.0919 |
bn4v_branch2b/beta:0 |
(256,) |
-1.0248 |
+0.8823 |
+0.1907 |
bn4v_branch2b/moving_mean:0 |
(256,) |
-0.5943 |
+0.2525 |
+0.1225 |
bn4v_branch2b/moving_variance:0 |
(256,) |
+0.0272 |
+0.2850 |
+0.0257 |
res4v_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1068 |
+0.1662 |
+0.0109 |
bn4v_branch2c/gamma:0 |
(1024,) |
+0.2345 |
+1.6791 |
+0.1361 |
bn4v_branch2c/beta:0 |
(1024,) |
-0.9361 |
+0.5179 |
+0.2008 |
bn4v_branch2c/moving_mean:0 |
(1024,) |
-0.3138 |
+0.2207 |
+0.0648 |
bn4v_branch2c/moving_variance:0 |
(1024,) |
+0.0023 |
+0.0550 |
+0.0047 |
res4w_branch2a/kernel:0 |
(1, 1, 1024, 256) |
-0.1353 |
+0.2094 |
+0.0127 |
bn4w_branch2a/gamma:0 |
(256,) |
+0.2443 |
+1.0933 |
+0.1136 |
bn4w_branch2a/beta:0 |
(256,) |
-1.4777 |
+0.3498 |
+0.2970 |
bn4w_branch2a/moving_mean:0 |
(256,) |
-15.1299 |
+2.8008 |
+2.1165 |
bn4w_branch2a/moving_variance:0 |
(256,) |
+0.7279 |
+19.8808 |
+1.5136 |
res4w_branch2b/kernel:0 |
(3, 3, 256, 256) |
-0.1029 |
+0.1717 |
+0.0083 |
bn4w_branch2b/gamma:0 |
(256,) |
+0.7102 |
+1.4165 |
+0.0997 |
bn4w_branch2b/beta:0 |
(256,) |
-0.9754 |
+0.3929 |
+0.2028 |
bn4w_branch2b/moving_mean:0 |
(256,) |
-0.3679 |
+0.2234 |
+0.0824 |
bn4w_branch2b/moving_variance:0 |
(256,) |
+0.0133 |
+0.1334 |
+0.0153 |
res4w_branch2c/kernel:0 |
(1, 1, 256, 1024) |
-0.1451 |
+0.1874 |
+0.0109 |
bn4w_branch2c/gamma:0 |
(1024,) |
+0.0215 |
+1.5528 |
+0.1530 |
bn4w_branch2c/beta:0 |
(1024,) |
-0.8591 |
+0.5082 |
+0.1832 |
bn4w_branch2c/moving_mean:0 |
(1024,) |
-0.4728 |
+0.1823 |
+0.1269 |
bn4w_branch2c/moving_variance:0 |
(1024,) |
+0.0008 |
+0.1209 |
+0.0090 |
res5a_branch2a/kernel:0 |
(1, 1, 1024, 512) |
-0.1747 |
+0.2130 |
+0.0143 |
bn5a_branch2a/gamma:0 |
(512,) |
+0.5045 |
+1.2405 |
+0.1245 |
bn5a_branch2a/beta:0 |
(512,) |
-1.4638 |
+0.5064 |
+0.3062 |
bn5a_branch2a/moving_mean:0 |
(512,) |
-11.4545 |
+4.6925 |
+1.6878 |
bn5a_branch2a/moving_variance:0 |
(512,) |
+1.1314 |
+15.7920 |
+1.4502 |
res5a_branch2b/kernel:0 |
(3, 3, 512, 512) |
-0.2464 |
+0.3249 |
+0.0091 |
bn5a_branch2b/gamma:0 |
(512,) |
+0.2982 |
+1.4230 |
+0.1373 |
bn5a_branch2b/beta:0 |
(512,) |
-1.6618 |
+0.7232 |
+0.3175 |
bn5a_branch2b/moving_mean:0 |
(512,) |
-2.2210 |
+1.7648 |
+0.3094 |
bn5a_branch2b/moving_variance:0 |
(512,) |
+0.1187 |
+1.4766 |
+0.1865 |
res5a_branch2c/kernel:0 |
(1, 1, 512, 2048) |
-0.2871 |
+0.3263 |
+0.0122 |
res5a_branch1/kernel:0 |
(1, 1, 1024, 2048) |
-0.3741 |
+0.4705 |
+0.0105 |
bn5a_branch2c/gamma:0 |
(2048,) |
+0.6692 |
+2.7116 |
+0.2395 |
bn5a_branch2c/beta:0 |
(2048,) |
-1.8662 |
+1.4781 |
+0.2376 |
bn5a_branch2c/moving_mean:0 |
(2048,) |
-0.5774 |
+0.6525 |
+0.0644 |
bn5a_branch2c/moving_variance:0 |
(2048,) |
+0.0024 |
+0.1612 |
+0.0084 |
bn5a_branch1/gamma:0 |
(2048,) |
+0.8662 |
+4.8957 |
+0.5145 |
bn5a_branch1/beta:0 |
(2048,) |
-1.8661 |
+1.4784 |
+0.2376 |
bn5a_branch1/moving_mean:0 |
(2048,) |
-10.0727 |
+4.4287 |
+1.0954 |
bn5a_branch1/moving_variance:0 |
(2048,) |
+0.2868 |
+7.7099 |
+0.5971 |
res5b_branch2a/kernel:0 |
(1, 1, 2048, 512) |
-0.1615 |
+0.2535 |
+0.0106 |
bn5b_branch2a/gamma:0 |
(512,) |
+0.3789 |
+1.1436 |
+0.0969 |
bn5b_branch2a/beta:0 |
(512,) |
-1.1929 |
+0.6042 |
+0.1990 |
bn5b_branch2a/moving_mean:0 |
(512,) |
-4.4332 |
+5.7965 |
+0.6776 |
bn5b_branch2a/moving_variance:0 |
(512,) |
+0.8363 |
+7.6290 |
+0.8946 |
res5b_branch2b/kernel:0 |
(3, 3, 512, 512) |
-0.1333 |
+0.2426 |
+0.0079 |
bn5b_branch2b/gamma:0 |
(512,) |
+0.5274 |
+1.1794 |
+0.1060 |
bn5b_branch2b/beta:0 |
(512,) |
-1.8549 |
+0.5551 |
+0.2810 |
bn5b_branch2b/moving_mean:0 |
(512,) |
-1.3069 |
+1.7223 |
+0.2265 |
bn5b_branch2b/moving_variance:0 |
(512,) |
+0.0572 |
+1.0433 |
+0.0724 |
res5b_branch2c/kernel:0 |
(1, 1, 512, 2048) |
-0.1352 |
+0.1977 |
+0.0106 |
bn5b_branch2c/gamma:0 |
(2048,) |
+0.5679 |
+2.4291 |
+0.2254 |
bn5b_branch2c/beta:0 |
(2048,) |
-2.3769 |
+0.1646 |
+0.2141 |
bn5b_branch2c/moving_mean:0 |
(2048,) |
-0.4428 |
+1.0842 |
+0.0525 |
bn5b_branch2c/moving_variance:0 |
(2048,) |
+0.0020 |
+0.2272 |
+0.0065 |
res5c_branch2a/kernel:0 |
(1, 1, 2048, 512) |
-0.1994 |
+0.3588 |
+0.0115 |
bn5c_branch2a/gamma:0 |
(512,) |
+0.1406 |
+1.1445 |
+0.0988 |
bn5c_branch2a/beta:0 |
(512,) |
-1.4070 |
+0.8456 |
+0.2542 |
bn5c_branch2a/moving_mean:0 |
(512,) |
-3.1862 |
+5.4617 |
+0.5412 |
bn5c_branch2a/moving_variance:0 |
(512,) |
+0.5824 |
+9.3422 |
+1.1140 |
res5c_branch2b/kernel:0 |
(3, 3, 512, 512) |
-0.0942 |
+0.0989 |
+0.0071 |
bn5c_branch2b/gamma:0 |
(512,) |
+0.4871 |
+1.1538 |
+0.0927 |
bn5c_branch2b/beta:0 |
(512,) |
-1.4373 |
+0.3356 |
+0.2770 |
bn5c_branch2b/moving_mean:0 |
(512,) |
-0.6456 |
+0.1676 |
+0.1068 |
bn5c_branch2b/moving_variance:0 |
(512,) |
+0.0354 |
+0.4077 |
+0.0522 |
res5c_branch2c/kernel:0 |
(1, 1, 512, 2048) |
-0.1317 |
+0.1323 |
+0.0103 |
bn5c_branch2c/gamma:0 |
(2048,) |
+0.6058 |
+2.5600 |
+0.2211 |
bn5c_branch2c/beta:0 |
(2048,) |
-4.0471 |
-0.6726 |
+0.2231 |
bn5c_branch2c/moving_mean:0 |
(2048,) |
-0.3058 |
+0.1791 |
+0.0368 |
bn5c_branch2c/moving_variance:0 |
(2048,) |
+0.0024 |
+0.0645 |
+0.0039 |
fpn_c5p5/kernel:0 |
(1, 1, 2048, 256) |
-0.0507 |
+0.0571 |
+0.0073 |
fpn_c5p5/bias:0 |
(256,) |
-0.0140 |
+0.0120 |
+0.0050 |
fpn_c4p4/kernel:0 |
(1, 1, 1024, 256) |
-0.1139 |
+0.0834 |
+0.0094 |
fpn_c4p4/bias:0 |
(256,) |
-0.0045 |
+0.0039 |
+0.0014 |
fpn_c3p3/kernel:0 |
(1, 1, 512, 256) |
-0.0509 |
+0.0533 |
+0.0073 |
fpn_c3p3/bias:0 |
(256,) |
-0.0061 |
+0.0055 |
+0.0020 |
fpn_c2p2/kernel:0 |
(1, 1, 256, 256) |
-0.0333 |
+0.0489 |
+0.0057 |
fpn_c2p2/bias:0 |
(256,) |
-0.0051 |
+0.0063 |
+0.0020 |
fpn_p5/kernel:0 |
(3, 3, 256, 256) |
-0.0338 |
+0.0384 |
+0.0054 |
fpn_p5/bias:0 |
(256,) |
-0.0080 |
+0.0079 |
+0.0035 |
fpn_p2/kernel:0 |
(3, 3, 256, 256) |
-0.0278 |
+0.0344 |
+0.0051 |
fpn_p2/bias:0 |
(256,) |
-0.0068 |
+0.0058 |
+0.0022 |
fpn_p3/kernel:0 |
(3, 3, 256, 256) |
-0.0246 |
+0.0288 |
+0.0046 |
fpn_p3/bias:0 |
(256,) |
-0.0039 |
+0.0038 |
+0.0015 |
fpn_p4/kernel:0 |
(3, 3, 256, 256) |
-0.0277 |
+0.0321 |
+0.0049 |
fpn_p4/bias:0 |
(256,) |
-0.0038 |
+0.0034 |
+0.0016 |
rpn_conv_shared/kernel:0 |
(3, 3, 256, 512) |
-0.0162 |
+0.0160 |
+0.0011 |
rpn_conv_shared/bias:0 |
(512,) |
-0.0012 |
+0.0030 |
+0.0004 |
rpn_class_raw/kernel:0 |
(1, 1, 512, 6) |
-0.0700 |
+0.0700 |
+0.0094 |
rpn_class_raw/bias:0 |
(6,) |
-0.0092 |
+0.0092 |
+0.0054 |
rpn_bbox_pred/kernel:0 |
(1, 1, 512, 12) |
-0.0844 |
+0.1395 |
+0.0139 |
rpn_bbox_pred/bias:0 |
(12,) |
-0.0167 |
+0.0201 |
+0.0097 |
mrcnn_class_conv1/kernel:0 |
(7, 7, 256, 1024) |
-0.0240 |
+0.0250 |
+0.0032 |
mrcnn_class_conv1/bias:0 |
(1024,) |
-0.0011 |
+0.0003 |
+0.0002 |
mrcnn_class_bn1/gamma:0 |
(1024,) |
+0.9650 |
+1.0500 |
+0.0079 |
mrcnn_class_bn1/beta:0 |
(1024,) |
-0.0320 |
+0.0050 |
+0.0033 |
mrcnn_class_bn1/moving_mean:0 |
(1024,) |
-20.4790 |
+8.7007 |
+2.2488 |
mrcnn_class_bn1/moving_variance:0 |
(1024,) |
+3.2710 |
+175.0298 |
+10.5956 |
mrcnn_class_conv2/kernel:0 |
(1, 1, 1024, 1024) |
-0.0632 |
+0.0426 |
+0.0051 |
mrcnn_class_conv2/bias:0 |
(1024,) |
-0.0156 |
+0.0214 |
+0.0039 |
mrcnn_class_bn2/gamma:0 |
(1024,) |
+0.9801 |
+1.0526 |
+0.0089 |
mrcnn_class_bn2/beta:0 |
(1024,) |
-0.0126 |
+0.0288 |
+0.0043 |
mrcnn_class_bn2/moving_mean:0 |
(1024,) |
-0.6272 |
+0.5237 |
+0.1323 |
mrcnn_class_bn2/moving_variance:0 |
(1024,) |
+0.0072 |
+0.6561 |
+0.0431 |
mrcnn_class_logits/kernel:0 |
(1024, 4) |
-0.0815 |
+0.0813 |
+0.0437 |
mrcnn_class_logits/bias:0 |
(4,) |
-0.0006 |
+0.0008 |
+0.0005 |
mrcnn_bbox_fc/kernel:0 |
(1024, 16) |
-0.0790 |
+0.0765 |
+0.0440 |
mrcnn_bbox_fc/bias:0 |
(16,) |
-0.0010 |
+0.0007 |
+0.0004 |
mrcnn_mask_conv1/kernel:0 |
(3, 3, 256, 256) |
-0.0520 |
+0.0462 |
+0.0045 |
mrcnn_mask_conv1/bias:0 |
(256,) |
-0.0037 |
+0.0022 |
+0.0009 |
mrcnn_mask_bn1/gamma:0 |
(256,) |
+0.9804 |
+1.0889 |
+0.0122 |
mrcnn_mask_bn1/beta:0 |
(256,) |
-0.0216 |
+0.0028 |
+0.0036 |
mrcnn_mask_bn1/moving_mean:0 |
(256,) |
-4.2402 |
+1.4667 |
+0.7274 |
mrcnn_mask_bn1/moving_variance:0 |
(256,) |
+0.3057 |
+5.8205 |
+0.9377 |
mrcnn_mask_conv2/kernel:0 |
(3, 3, 256, 256) |
-0.0544 |
+0.0949 |
+0.0045 |
mrcnn_mask_conv2/bias:0 |
(256,) |
-0.0049 |
+0.0035 |
+0.0016 |
mrcnn_mask_bn2/gamma:0 |
(256,) |
+0.9846 |
+1.0401 |
+0.0092 |
mrcnn_mask_bn2/beta:0 |
(256,) |
-0.0176 |
+0.0024 |
+0.0034 |
mrcnn_mask_bn2/moving_mean:0 |
(256,) |
-0.7085 |
+0.2866 |
+0.1437 |
mrcnn_mask_bn2/moving_variance:0 |
(256,) |
+0.0300 |
+0.3525 |
+0.0369 |
mrcnn_mask_conv3/kernel:0 |
(3, 3, 256, 256) |
-0.0416 |
+0.0459 |
+0.0042 |
mrcnn_mask_conv3/bias:0 |
(256,) |
-0.0107 |
+0.0073 |
+0.0028 |
mrcnn_mask_bn3/gamma:0 |
(256,) |
+0.9867 |
+1.0359 |
+0.0074 |
mrcnn_mask_bn3/beta:0 |
(256,) |
-0.0312 |
+0.0009 |
+0.0044 |
mrcnn_mask_bn3/moving_mean:0 |
(256,) |
-0.5781 |
+0.2730 |
+0.1416 |
mrcnn_mask_bn3/moving_variance:0 |
(256,) |
+0.0265 |
+0.1663 |
+0.0258 |
mrcnn_mask_conv4/kernel:0 |
(3, 3, 256, 256) |
-0.0326 |
+0.0267 |
+0.0037 |
mrcnn_mask_conv4/bias:0 |
(256,) |
-0.0014 |
+0.0049 |
+0.0009 |
mrcnn_mask_bn4/gamma:0 |
(256,) |
+0.9985 |
+1.0724 |
+0.0184 |
mrcnn_mask_bn4/beta:0 |
(256,) |
+0.0042 |
+0.0456 |
+0.0111 |
mrcnn_mask_bn4/moving_mean:0 |
(256,) |
-0.2408 |
+0.1736 |
+0.0773 |
mrcnn_mask_bn4/moving_variance:0 |
(256,) |
+0.0150 |
+0.0639 |
+0.0084 |
mrcnn_mask_deconv/kernel:0 |
(2, 2, 256, 256) |
-0.0273 |
+0.0518 |
+0.0047 |
mrcnn_mask_deconv/bias:0 |
(256,) |
-0.0029 |
+0.0718 |
+0.0104 |
mrcnn_mask/kernel:0 |
(1, 1, 256, 4) |
-0.1607 |
+0.1528 |
+0.0875 |
mrcnn_mask/bias:0 |
(4,) |
-0.0078 |
+0.0000 |
+0.0033 |