Inspect and visualize data loading and pre-processing code.
import osimport sysimport itertoolsimport mathimport loggingimport jsonimport reimport randomfrom collections import OrderedDictimport numpy as npimport matplotlibimport matplotlib.pyplot as pltimport matplotlib.patches as patchesimport matplotlib.lines as linesfrom matplotlib.patches import Polygon# Root directory of the projectROOT_DIR = os.path.abspath("../../")# Import Mask RCNNsys.path.append(ROOT_DIR) # To find local version of the libraryfrom mrcnn import utilsfrom mrcnn import visualizefrom mrcnn.visualize import display_imagesimport mrcnn.model as modellibfrom mrcnn.model import log%matplotlib inline
Using TensorFlow backend.
Configurations
Run one of the code blocks below to import and load the configurations to use.
# Run one of the code blocks# Shapes toy dataset# import shapes# config = shapes.ShapesConfig()# MS COCO Datasetimport cococonfig = coco.CocoConfig()COCO_DIR ="path to COCO dataset"# TODO: enter value here
Dataset
# Load datasetif config.NAME =='shapes': dataset = shapes.ShapesDataset() dataset.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])elif config.NAME =="coco": dataset = coco.CocoDataset() dataset.load_coco(COCO_DIR, "train")# Must call before using the datasetdataset.prepare()print("Image Count: {}".format(len(dataset.image_ids)))print("Class Count: {}".format(dataset.num_classes))for i, info inenumerate(dataset.class_info):print("{:3}. {:50}".format(i, info['name']))
# Load and display random samplesimage_ids = np.random.choice(dataset.image_ids, 4)for image_id in image_ids: image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) visualize.display_top_masks(image, mask, class_ids, dataset.class_names)
Bounding Boxes
Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation.
# Load random image and mask.image_id = random.choice(dataset.image_ids)image = dataset.load_image(image_id)mask, class_ids = dataset.load_mask(image_id)# Compute Bounding boxbbox = utils.extract_bboxes(mask)# Display image and additional statsprint("image_id ", image_id, dataset.image_reference(image_id))log("image", image)log("mask", mask)log("class_ids", class_ids)log("bbox", bbox)# Display image and instancesvisualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left.
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
"the returned array has changed.", UserWarning)
Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that’s 100MB for the masks alone.
To improve training speed, we optimize masks by: * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object. * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class.
To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples.
The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution.
For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts. * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level. * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row. * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function.
Anchor Stride: In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature map of the first layer is 256x256, which generates about 200K anchors (256x256x3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example.
In this implementation we use an anchor stride of 2, which is different from the paper.
Count: 65472
Scales: (32, 64, 128, 256, 512)
ratios: [0.5, 1, 2]
Anchors per Cell: 3
Levels: 5
Anchors in Level 0: 49152
Anchors in Level 1: 12288
Anchors in Level 2: 3072
Anchors in Level 3: 768
Anchors in Level 4: 192
Visualize anchors of one cell at the center of the feature map of a specific level.
## Visualize anchors of one cell at the center of the feature map of a specific level# Load and draw random imageimage_id = np.random.choice(dataset.image_ids, 1)[0]image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id)fig, ax = plt.subplots(1, figsize=(10, 10))ax.imshow(image)levels =len(backbone_shapes)for level inrange(levels): colors = visualize.random_colors(levels)# Compute the index of the anchors at the center of the image level_start =sum(anchors_per_level[:level]) # sum of anchors of previous levels level_anchors = anchors[level_start:level_start+anchors_per_level[level]]print("Level {}. Anchors: {:6} Feature map Shape: {}".format(level, level_anchors.shape[0], backbone_shapes[level])) center_cell = backbone_shapes[level] //2 center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1]) level_center = center_cell_index * anchors_per_cell center_anchor = anchors_per_cell * ( (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \+ center_cell[1] / config.RPN_ANCHOR_STRIDE) level_center =int(center_anchor)# Draw anchors. Brightness show the order in the array, dark to bright.for i, rect inenumerate(level_anchors[level_center:level_center+anchors_per_cell]): y1, x1, y2, x2 = rect p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, facecolor='none', edgecolor=(i+1)*np.array(colors[level]) / anchors_per_cell) ax.add_patch(p)
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
"the returned array has changed.", UserWarning)
# Uncomment to run the generator through a lot of images# to catch rare errors# for i in range(1000):# print(i)# _, _ = next(g)
# Get Next Imageif random_rois: [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \ [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] =next(g) log("rois", rois) log("mrcnn_class_ids", mrcnn_class_ids) log("mrcnn_bbox", mrcnn_bbox) log("mrcnn_mask", mrcnn_mask)else: [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ =next(g)log("gt_class_ids", gt_class_ids)log("gt_boxes", gt_boxes)log("gt_masks", gt_masks)log("rpn_match", rpn_match, )log("rpn_bbox", rpn_bbox)image_id = modellib.parse_image_meta(image_meta)["image_id"][0]print("image_id: ", image_id, dataset.image_reference(image_id))# Remove the last dim in mrcnn_class_ids. It's only added# to satisfy Keras restriction on target shape.mrcnn_class_ids = mrcnn_class_ids[:,:,0]
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
"the returned array has changed.", UserWarning)
# Show negative anchorsvisualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])
# Show neutral anchors. They don't contribute to training.visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])
ROIs
if random_rois:# Class aware bboxes bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]# Refined ROIs refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:,:4] * config.BBOX_STD_DEV)# Class aware masks mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]] visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)# Any repeated ROIs? rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1]))) _, idx = np.unique(rows, return_index=True)print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))
Positive ROIs: 38
Negative ROIs: 90
Positive Ratio: 0.30
Unique ROIs: 128 out of 128
if random_rois:# Dispalay ROIs and corresponding masks and bounding boxes ids = random.sample(range(rois.shape[1]), 8) images = [] titles = []for i in ids: image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0]) image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0]) images.append(image) titles.append("ROI {}".format(i)) images.append(mask_specific[i] *255) titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20]) display_images(images, titles, cols=4, cmap="Blues", interpolation="none")
# Check ratio of positive ROIs in a set of images.if random_rois: limit =10 temp_g = modellib.data_generator( dataset, config, shuffle=True, random_rois=10000, batch_size=1, detection_targets=True) total =0for i inrange(limit): _, [ids, _, _] =next(temp_g) positive_rois = np.sum(ids[0] >0) total += positive_roisprint("{:5}{:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))print("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
42 0.33
42 0.33
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
"the returned array has changed.", UserWarning)