Mask R-CNN - Inspect Training Data

Inspect and visualize data loading and pre-processing code.

import os
import sys
import itertools
import math
import logging
import json
import re
import random
from collections import OrderedDict
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon

# Root directory of the project
ROOT_DIR = os.path.abspath("../../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
from mrcnn import visualize
from mrcnn.visualize import display_images
import mrcnn.model as modellib
from mrcnn.model import log

%matplotlib inline
Using TensorFlow backend.

Configurations

Run one of the code blocks below to import and load the configurations to use.

# Run one of the code blocks

# Shapes toy dataset
# import shapes
# config = shapes.ShapesConfig()

# MS COCO Dataset
import coco
config = coco.CocoConfig()
COCO_DIR = "path to COCO dataset"  # TODO: enter value here

Dataset

# Load dataset
if config.NAME == 'shapes':
    dataset = shapes.ShapesDataset()
    dataset.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
elif config.NAME == "coco":
    dataset = coco.CocoDataset()
    dataset.load_coco(COCO_DIR, "train")

# Must call before using the dataset
dataset.prepare()

print("Image Count: {}".format(len(dataset.image_ids)))
print("Class Count: {}".format(dataset.num_classes))
for i, info in enumerate(dataset.class_info):
    print("{:3}. {:50}".format(i, info['name']))
loading annotations into memory...
Done (t=11.93s)
creating index...
index created!
Image Count: 82081
Class Count: 81
  0. BG                                                
  1. person                                            
  2. bicycle                                           
  3. car                                               
  4. motorcycle                                        
  5. airplane                                          
  6. bus                                               
  7. train                                             
  8. truck                                             
  9. boat                                              
 10. traffic light                                     
 11. fire hydrant                                      
 12. stop sign                                         
 13. parking meter                                     
 14. bench                                             
 15. bird                                              
 16. cat                                               
 17. dog                                               
 18. horse                                             
 19. sheep                                             
 20. cow                                               
 21. elephant                                          
 22. bear                                              
 23. zebra                                             
 24. giraffe                                           
 25. backpack                                          
 26. umbrella                                          
 27. handbag                                           
 28. tie                                               
 29. suitcase                                          
 30. frisbee                                           
 31. skis                                              
 32. snowboard                                         
 33. sports ball                                       
 34. kite                                              
 35. baseball bat                                      
 36. baseball glove                                    
 37. skateboard                                        
 38. surfboard                                         
 39. tennis racket                                     
 40. bottle                                            
 41. wine glass                                        
 42. cup                                               
 43. fork                                              
 44. knife                                             
 45. spoon                                             
 46. bowl                                              
 47. banana                                            
 48. apple                                             
 49. sandwich                                          
 50. orange                                            
 51. broccoli                                          
 52. carrot                                            
 53. hot dog                                           
 54. pizza                                             
 55. donut                                             
 56. cake                                              
 57. chair                                             
 58. couch                                             
 59. potted plant                                      
 60. bed                                               
 61. dining table                                      
 62. toilet                                            
 63. tv                                                
 64. laptop                                            
 65. mouse                                             
 66. remote                                            
 67. keyboard                                          
 68. cell phone                                        
 69. microwave                                         
 70. oven                                              
 71. toaster                                           
 72. sink                                              
 73. refrigerator                                      
 74. book                                              
 75. clock                                             
 76. vase                                              
 77. scissors                                          
 78. teddy bear                                        
 79. hair drier                                        
 80. toothbrush                                        

Display Samples

Load and display images and masks.

# Load and display random samples
image_ids = np.random.choice(dataset.image_ids, 4)
for image_id in image_ids:
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, dataset.class_names)

Bounding Boxes

Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation.

# Load random image and mask.
image_id = random.choice(dataset.image_ids)
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id ", image_id, dataset.image_reference(image_id))
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
image_id  74886 http://cocodataset.org/#explore?id=118535
image                    shape: (375, 500, 3)         min:    0.00000  max:  255.00000
mask                     shape: (375, 500, 5)         min:    0.00000  max:    1.00000
class_ids                shape: (5,)                  min:    1.00000  max:   35.00000
bbox                     shape: (5, 4)                min:    1.00000  max:  329.00000

Resize Images

To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left.

# Load random image and mask.
image_id = np.random.choice(dataset.image_ids, 1)[0]
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
original_shape = image.shape
# Resize
image, window, scale, padding, _ = utils.resize_image(
    image, 
    min_dim=config.IMAGE_MIN_DIM, 
    max_dim=config.IMAGE_MAX_DIM,
    mode=config.IMAGE_RESIZE_MODE)
mask = utils.resize_mask(mask, scale, padding)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id: ", image_id, dataset.image_reference(image_id))
print("Original shape: ", original_shape)
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
  "the returned array has changed.", UserWarning)
image_id:  6480 http://cocodataset.org/#explore?id=402563
Original shape:  (476, 640, 3)
image                    shape: (1024, 1024, 3)       min:    0.00000  max:  255.00000
mask                     shape: (1024, 1024, 32)      min:    0.00000  max:    1.00000
class_ids                shape: (32,)                 min:    1.00000  max:   77.00000
bbox                     shape: (32, 4)               min:    1.00000  max:  991.00000

Mini Masks

Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that’s 100MB for the masks alone.

To improve training speed, we optimize masks by: * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object. * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class.

To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples.

image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
    dataset, config, image_id, use_mini_mask=False)

log("image", image)
log("image_meta", image_meta)
log("class_ids", class_ids)
log("bbox", bbox)
log("mask", mask)

display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])
image                    shape: (1024, 1024, 3)       min:    0.00000  max:  255.00000
image_meta               shape: (89,)                 min:    0.00000  max: 23221.00000
bbox                     shape: (1, 5)                min:   62.00000  max:  578.00000
mask                     shape: (1024, 1024, 1)       min:    0.00000  max:    1.00000

visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)

# Add augmentation and mask resizing.
image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
    dataset, config, image_id, augment=True, use_mini_mask=True)
log("mask", mask)
display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])
mask                     shape: (56, 56, 1)           min:    0.00000  max:    1.00000

mask = utils.expand_mask(bbox, mask, image.shape)
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)

Anchors

The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution.

For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts. * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level. * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row. * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function.

Anchor Stride: In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature map of the first layer is 256x256, which generates about 200K anchors (256x256x3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example.

In this implementation we use an anchor stride of 2, which is different from the paper.

# Generate Anchors
backbone_shapes = modellib.compute_backbone_shapes(config, config.IMAGE_SHAPE)
anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, 
                                          config.RPN_ANCHOR_RATIOS,
                                          backbone_shapes,
                                          config.BACKBONE_STRIDES, 
                                          config.RPN_ANCHOR_STRIDE)

# Print summary of anchors
num_levels = len(backbone_shapes)
anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
print("Count: ", anchors.shape[0])
print("Scales: ", config.RPN_ANCHOR_SCALES)
print("ratios: ", config.RPN_ANCHOR_RATIOS)
print("Anchors per Cell: ", anchors_per_cell)
print("Levels: ", num_levels)
anchors_per_level = []
for l in range(num_levels):
    num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
    anchors_per_level.append(anchors_per_cell * num_cells // config.RPN_ANCHOR_STRIDE**2)
    print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))
Count:  65472
Scales:  (32, 64, 128, 256, 512)
ratios:  [0.5, 1, 2]
Anchors per Cell:  3
Levels:  5
Anchors in Level 0: 49152
Anchors in Level 1: 12288
Anchors in Level 2: 3072
Anchors in Level 3: 768
Anchors in Level 4: 192

Visualize anchors of one cell at the center of the feature map of a specific level.

## Visualize anchors of one cell at the center of the feature map of a specific level

# Load and draw random image
image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id)
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image)
levels = len(backbone_shapes)

for level in range(levels):
    colors = visualize.random_colors(levels)
    # Compute the index of the anchors at the center of the image
    level_start = sum(anchors_per_level[:level]) # sum of anchors of previous levels
    level_anchors = anchors[level_start:level_start+anchors_per_level[level]]
    print("Level {}. Anchors: {:6}  Feature map Shape: {}".format(level, level_anchors.shape[0], 
                                                                  backbone_shapes[level]))
    center_cell = backbone_shapes[level] // 2
    center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1])
    level_center = center_cell_index * anchors_per_cell 
    center_anchor = anchors_per_cell * (
        (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
        + center_cell[1] / config.RPN_ANCHOR_STRIDE)
    level_center = int(center_anchor)

    # Draw anchors. Brightness show the order in the array, dark to bright.
    for i, rect in enumerate(level_anchors[level_center:level_center+anchors_per_cell]):
        y1, x1, y2, x2 = rect
        p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, facecolor='none',
                              edgecolor=(i+1)*np.array(colors[level]) / anchors_per_cell)
        ax.add_patch(p)
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
  "the returned array has changed.", UserWarning)
Level 0. Anchors:  49152  Feature map Shape: [256 256]
Level 1. Anchors:  12288  Feature map Shape: [128 128]
Level 2. Anchors:   3072  Feature map Shape: [64 64]
Level 3. Anchors:    768  Feature map Shape: [32 32]
Level 4. Anchors:    192  Feature map Shape: [16 16]

Data Generator

# Create data generator
random_rois = 2000
g = modellib.data_generator(
    dataset, config, shuffle=True, random_rois=random_rois, 
    batch_size=4,
    detection_targets=True)
# Uncomment to run the generator through a lot of images
# to catch rare errors
# for i in range(1000):
#     print(i)
#     _, _ = next(g)
# Get Next Image
if random_rois:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \
    [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)
    
    log("rois", rois)
    log("mrcnn_class_ids", mrcnn_class_ids)
    log("mrcnn_bbox", mrcnn_bbox)
    log("mrcnn_mask", mrcnn_mask)
else:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)
    
log("gt_class_ids", gt_class_ids)
log("gt_boxes", gt_boxes)
log("gt_masks", gt_masks)
log("rpn_match", rpn_match, )
log("rpn_bbox", rpn_bbox)
image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
print("image_id: ", image_id, dataset.image_reference(image_id))

# Remove the last dim in mrcnn_class_ids. It's only added
# to satisfy Keras restriction on target shape.
mrcnn_class_ids = mrcnn_class_ids[:,:,0]
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
  "the returned array has changed.", UserWarning)
rois                     shape: (4, 128, 4)           min:    0.00000  max: 1023.00000
mrcnn_class_ids          shape: (4, 128, 1)           min:    0.00000  max:   67.00000
mrcnn_bbox               shape: (4, 128, 81, 5)       min:   -3.58824  max:    3.45455
mrcnn_mask               shape: (4, 128, 28, 28, 81)  min:    0.00000  max:    1.00000
gt_boxes                 shape: (4, 100, 5)           min:    0.00000  max: 1024.00000
gt_masks                 shape: (4, 56, 56, 100)      min:    0.00000  max:    1.00000
rpn_match                shape: (4, 65472, 1)         min:   -1.00000  max:    1.00000
rpn_bbox                 shape: (4, 256, 4)           min:   -4.60969  max:    1.76777
image_id:  2937 http://cocodataset.org/#explore?id=135453
b = 0

# Restore original image (reverse normalization)
sample_image = modellib.unmold_image(normalized_images[b], config)

# Compute anchor shifts.
indices = np.where(rpn_match[b] == 1)[0]
refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
log("anchors", anchors)
log("refined_anchors", refined_anchors)

# Get list of positive anchors
positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
print("Positive anchors: {}".format(len(positive_anchor_ids)))
negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
print("Negative anchors: {}".format(len(negative_anchor_ids)))
neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
print("Neutral anchors: {}".format(len(neutral_anchor_ids)))

# ROI breakdown by class
for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())):
    if n:
        print("{:23}: {}".format(c[:20], n))

# Show positive anchors
visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids], 
                     refined_boxes=refined_anchors)
anchors                  shape: (65472, 4)            min: -362.03867  max: 1258.03867
refined_anchors          shape: (4, 4)                min:  112.99997  max:  912.00000
Positive anchors: 4
Negative anchors: 252
Neutral anchors: 65216
BG                     : 90
chair                  : 6
bed                    : 30
remote                 : 2

# Show negative anchors
visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])

# Show neutral anchors. They don't contribute to training.
visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])

ROIs

if random_rois:
    # Class aware bboxes
    bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]

    # Refined ROIs
    refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:,:4] * config.BBOX_STD_DEV)

    # Class aware masks
    mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]]

    visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)
    
    # Any repeated ROIs?
    rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
    _, idx = np.unique(rows, return_index=True)
    print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))
Positive ROIs:  38
Negative ROIs:  90
Positive Ratio: 0.30
Unique ROIs: 128 out of 128

if random_rois:
    # Dispalay ROIs and corresponding masks and bounding boxes
    ids = random.sample(range(rois.shape[1]), 8)

    images = []
    titles = []
    for i in ids:
        image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0])
        image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0])
        images.append(image)
        titles.append("ROI {}".format(i))
        images.append(mask_specific[i] * 255)
        titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20])

    display_images(images, titles, cols=4, cmap="Blues", interpolation="none")

# Check ratio of positive ROIs in a set of images.
if random_rois:
    limit = 10
    temp_g = modellib.data_generator(
        dataset, config, shuffle=True, random_rois=10000, 
        batch_size=1, detection_targets=True)
    total = 0
    for i in range(limit):
        _, [ids, _, _] = next(temp_g)
        positive_rois = np.sum(ids[0] > 0)
        total += positive_rois
        print("{:5} {:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))
    print("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
   42  0.33
   42  0.33
/usr/local/lib/python3.5/dist-packages/scipy/ndimage/interpolation.py:600: UserWarning: From scipy 0.13.0, the output shape of zoom() is calculated with round() instead of int() - for these inputs the size of the returned array has changed.
  "the returned array has changed.", UserWarning)
   42  0.33
   42  0.33
   42  0.33
   42  0.33
   42  0.33
   42  0.33
   42  0.33
   42  0.33
Average percent: 0.33
Back to top