import numpy as npfrom sklearn.model_selection import train_test_splitdef create_toy_data(func, sample_size, std, domain=[0, 1]): rng = np.random.default_rng() x = np.linspace(domain[0], domain[1], sample_size)# x = rng.uniform(0, 1, sample_size) np.random.shuffle(x) y = func(x) + rng.normal(scale=std, size=x.shape)return x, ydef sinusoidal(x):return np.sin(2* np.pi * x)m =20x, y = create_toy_data(sinusoidal, m, 0.25)# Reshape x to work with sklearn (needed if x is a 1D array)x = x.reshape(-1, 1)# Split datasetx_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=42)# Print the shapes of the splitsprint("Training set size:", x_train.shape, y_train.shape)print("Test set size:", x_test.shape, y_test.shape)
Training set size: (14, 1) (14,)
Test set size: (6, 1) (6,)
import numpy as npimport matplotlib.pyplot as pltimport testimport numpy as npimport matplotlib.pyplot as plt# SGD Loop with polynomial features and mini-batch supportdef sgd_loop( X_train, y_train, X_test, y_test, w, learning_rate, epochs, lambda_reg, n_samples, batch_size=1,):# Arrays to store loss values for visualization losses = [] test_losses = []# SGD Loopfor epoch inrange(epochs):for i inrange(0, n_samples, batch_size): # Iterate in mini-batches# Select a mini-batch of `batch_size` batch_indices = np.random.choice(n_samples, batch_size, replace=False) xi = X_train[batch_indices] yi = y_train[batch_indices]# Prediction y_pred = np.dot(xi, w)# Compute error error = y_pred - yi# Compute gradients (Mean of batch gradients) dw = (2/ batch_size) * (xi.T @ error).flatten() +2* lambda_reg * w# Update weights w -= learning_rate * dw# Compute training loss y_hat_train = X_train @ w loss = np.mean((y_hat_train - y_train) **2) + lambda_reg * np.sum(w**2) losses.append(loss)# Compute test loss y_hat_test = X_test @ w test_loss = np.mean((y_hat_test - y_test) **2) + lambda_reg * np.sum(w**2) test_losses.append(test_loss)# Plot loss vs epochs plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) plt.plot(range(epochs), losses, label="Training Loss", color="blue") plt.plot(range(epochs), test_losses, label="Test Loss", color="red") plt.xlabel("Epochs") plt.ylabel("Loss") plt.title("Training & Test Loss vs Epochs") plt.legend()# Start of plotting regression curve plt.subplot(1, 2, 2) x_range = np.linspace(X_train.min(), X_train.max(), 100).reshape(-1, 1)# computation hypothesis = np.zeros_like(x_range)for i inrange(len(w)): hypothesis += w[i] * (x_range**i) # Add each term: w_i * x^i# Plot training and testing data points plt.scatter(x_train, y_train, color="blue", label="Training Data") plt.scatter(x_test, y_test, color="red", label="Test Data")# plot our regression curve plt.plot(x_range, hypothesis, color="green", label="Regularized Hypothesis") plt.xlabel("x") plt.ylabel("y") plt.title("Regularized 9-degree Polynomial Regression Function") plt.legend() plt.tight_layout() plt.show() min_loss =min(losses) min_index = losses.index(min_loss) min_test_loss =min(test_losses) min_test_index = test_losses.index(min_test_loss)# Print final parametersprint("Final weights:", w.flatten())print(f"Smallest Loss: {min_loss} loss at index {min_index}")print(f"Smallest Test Loss: {min_test_loss} loss at index {min_test_index}")returnmin(test_losses)
n_features = X_train.shape[1] # Number of polynomial features# Replace this vector with the optimal trial vectorw = np.array( [0.3821733,0.3096256,-1.87535451,-0.41147161,0.48204058,-0.47616227,-0.91596271,0.33230879,0.92623104,1.34749729, ])test_loss = sgd_loop( X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, w=w, learning_rate=0.01, epochs=10000, lambda_reg=0.02, n_samples=len(y_train), batch_size=5,)
Final weights: [ 1.00604731 -1.11487521 -1.08804126 -0.67581313 -0.275726 0.03492984
0.25939701 0.41739804 0.52790119 0.60551076]
Smallest Loss: 0.2553412747580645 loss at index 9046
Smallest Test Loss: 0.29048783420107993 loss at index 46
import optunadef objective(trial):# Sample lambda_reg from Optuna (log-uniform for better scaling) lambda_reg = trial.suggest_loguniform("lambda_reg", 1e-4, 1.0 ) # Define the search space# batch_size = trial.suggest_uniform(# "batch_size", 1, 10# ) # Define the search space# Initialize weights w = np.random.randn(10)# fix batch size to the size of the training set batch_size =len(y_train)# Run SGD min_test_loss = sgd_loop( X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, w=w, learning_rate=0.01, epochs=10000, lambda_reg=lambda_reg, n_samples=len(y_train), batch_size=batch_size, )return min_test_loss
# Set direction to "minimize" as we want to minimize the objectivestudy = optuna.create_study(direction="minimize")n_trials =50study.optimize(objective, n_trials=50) # Run the optimization for 100 trials# Best lambda_regbest_lambda_reg = study.best_params["lambda_reg"]print(f"Best lambda_reg: {best_lambda_reg}")print(f"Best test loss: {study.best_value}")# Best Batch sizebest_lambda_reg = study.best_params["lambda_reg"]print(f"Best lambda_reg: {best_lambda_reg}")print(f"Best test loss: {study.best_value}")# Plot optimization historyoptuna.visualization.matplotlib.plot_optimization_history(study)plt.show()
[I 2025-02-17 18:25:31,900] A new study created in memory with name: no-name-c16d0964-4ef8-4d77-a772-67b0d7254236
[I 2025-02-17 18:25:32,334] Trial 0 finished with value: 0.25246196417213684 and parameters: {'lambda_reg': 0.06551173706993008}. Best is trial 0 with value: 0.25246196417213684.
Final weights: [ 0.59108642 -0.67069076 -0.6428674 -0.41760298 -0.20213494 -0.032135
0.09461629 0.18751481 0.25553166 0.30566771]
Smallest Loss: 0.38270008921907406 loss at index 9999
Smallest Test Loss: 0.25246196417213684 loss at index 1215
[I 2025-02-17 18:25:32,773] Trial 1 finished with value: 0.1503094754927418 and parameters: {'lambda_reg': 0.000527492459070285}. Best is trial 1 with value: 0.1503094754927418.
Final weights: [ 1.35320129 -1.5571787 -1.40869777 -1.29190934 0.47231023 -1.08174526
0.41238338 0.33183553 1.51556294 1.21863739]
Smallest Loss: 0.11938229459412537 loss at index 9999
Smallest Test Loss: 0.1503094754927418 loss at index 363
[I 2025-02-17 18:25:33,214] Trial 2 finished with value: 0.1429479584041531 and parameters: {'lambda_reg': 0.0001260654743130314}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.36199039 -1.32905763 -2.13710947 -1.42419792 1.40230044 -0.95505338
-0.03352791 1.73474795 -0.14887173 1.48914749]
Smallest Loss: 0.11131972424053656 loss at index 9999
Smallest Test Loss: 0.1429479584041531 loss at index 442
[I 2025-02-17 18:25:33,650] Trial 3 finished with value: 0.2632748599547239 and parameters: {'lambda_reg': 0.06363842011351574}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 0.60051649 -0.68191828 -0.65327481 -0.42361184 -0.20400396 -0.03080294
0.0982605 0.19279378 0.26196391 0.31290764]
Smallest Loss: 0.3795914229287947 loss at index 9999
Smallest Test Loss: 0.2632748599547239 loss at index 9999
[I 2025-02-17 18:25:34,083] Trial 4 finished with value: 0.17522335391683225 and parameters: {'lambda_reg': 0.005940462779782222}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.18491207 -1.13424432 -1.67794389 -1.20576664 -0.10159442 0.13879172
0.47694623 0.90621764 0.34554535 0.91899527]
Smallest Loss: 0.16911134145774273 loss at index 9999
Smallest Test Loss: 0.17522335391683225 loss at index 454
[I 2025-02-17 18:25:34,517] Trial 5 finished with value: 0.27657563927034823 and parameters: {'lambda_reg': 0.01725211991077431}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.01701494 -1.19448833 -1.09660257 -0.72192152 -0.28564637 0.02268728
0.27397868 0.41242188 0.61934081 0.65305399]
Smallest Loss: 0.24152486137081672 loss at index 9999
Smallest Test Loss: 0.27657563927034823 loss at index 608
[I 2025-02-17 18:25:34,986] Trial 6 finished with value: 0.24915780488417588 and parameters: {'lambda_reg': 0.019807318767494368}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 0.97924394 -1.13712702 -1.10247167 -0.66489209 -0.27412209 0.04893892
0.26652601 0.41439017 0.5420305 0.60174322]
Smallest Loss: 0.25441306247100376 loss at index 9999
Smallest Test Loss: 0.24915780488417588 loss at index 238
[I 2025-02-17 18:25:35,529] Trial 7 finished with value: 0.305474715814319 and parameters: {'lambda_reg': 0.666667710944612}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 0.09008183 -0.1312564 -0.13438906 -0.10365404 -0.07262511 -0.04734689
-0.02793427 -0.01328716 -0.00225648 0.00609252]
Smallest Loss: 0.5530147050491142 loss at index 1832
Smallest Test Loss: 0.305474715814319 loss at index 2514
[I 2025-02-17 18:25:35,999] Trial 8 finished with value: 0.24535624845447196 and parameters: {'lambda_reg': 0.11840552797808132}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 0.41214507 -0.46219061 -0.45056745 -0.30512756 -0.16458686 -0.0527267
0.03150354 0.09389918 0.1400811 0.17447621]
Smallest Loss: 0.4416954913174239 loss at index 8235
Smallest Test Loss: 0.24535624845447196 loss at index 9999
[I 2025-02-17 18:25:36,491] Trial 9 finished with value: 0.1920144603809063 and parameters: {'lambda_reg': 0.00012337235017505026}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.59247453 -2.37205758 -1.5595258 -0.67328736 0.60408925 -0.50820345
1.63537395 0.88829477 -0.31882483 0.61973811]
Smallest Loss: 0.11611364531024686 loss at index 9999
Smallest Test Loss: 0.1920144603809063 loss at index 731
[I 2025-02-17 18:25:36,960] Trial 10 finished with value: 0.16068221730054083 and parameters: {'lambda_reg': 0.0018112435929584373}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.31322659 -1.40716837 -1.8326034 -0.79375074 0.29195613 0.24438596
-1.62604109 1.11948638 1.13198949 1.4935107 ]
Smallest Loss: 0.14075493634587322 loss at index 9999
Smallest Test Loss: 0.16068221730054083 loss at index 449
[I 2025-02-17 18:25:37,396] Trial 11 finished with value: 0.17667648368369646 and parameters: {'lambda_reg': 0.00011194249792551292}. Best is trial 2 with value: 0.1429479584041531.
Final weights: [ 1.33388788 -1.11523421 -2.16765318 -1.73533474 -0.49377034 1.16498399
1.54364909 0.30158947 1.32751456 -0.20786508]
Smallest Loss: 0.10560722902210629 loss at index 9999
Smallest Test Loss: 0.17667648368369646 loss at index 280
[I 2025-02-17 18:25:37,867] Trial 12 finished with value: 0.124297862143502 and parameters: {'lambda_reg': 0.0006296535963861647}. Best is trial 12 with value: 0.124297862143502.
Final weights: [ 1.18269273 -0.67352546 -2.15817267 -1.1520371 -1.04364709 -0.49061337
0.57745943 2.31991745 0.92135974 0.50161556]
Smallest Loss: 0.11953245524099443 loss at index 9999
Smallest Test Loss: 0.124297862143502 loss at index 385
[I 2025-02-17 18:25:38,301] Trial 13 finished with value: 0.12145689134192648 and parameters: {'lambda_reg': 0.0005870033844583597}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.23786783 -0.80718737 -2.38655107 -1.41148184 0.14013061 0.06932885
0.78278597 -0.53224978 1.96954859 0.90897909]
Smallest Loss: 0.1174251414186348 loss at index 9999
Smallest Test Loss: 0.12145689134192648 loss at index 720
[I 2025-02-17 18:25:38,730] Trial 14 finished with value: 0.14446176302223773 and parameters: {'lambda_reg': 0.000920090992385438}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.34739362 -1.60045027 -1.02103225 -2.11031179 0.55355309 -0.07274479
-0.39121284 1.40315442 0.55082638 1.29238225]
Smallest Loss: 0.12421856649041972 loss at index 9999
Smallest Test Loss: 0.14446176302223773 loss at index 817
[I 2025-02-17 18:25:39,159] Trial 15 finished with value: 0.14321457257941372 and parameters: {'lambda_reg': 0.0031919712550166277}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.26964472 -1.22743179 -1.8259316 -1.40293883 0.0778588 0.02281889
0.77809168 1.31661603 0.54356779 0.33974519]
Smallest Loss: 0.14483783187129498 loss at index 9999
Smallest Test Loss: 0.14321457257941372 loss at index 932
[I 2025-02-17 18:25:39,633] Trial 16 finished with value: 0.38417809917914236 and parameters: {'lambda_reg': 0.00043950817803341496}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.60866309 -2.82176009 -0.22269203 -1.15760793 -0.55871566 0.91548155
0.3284552 0.05615636 1.12641008 0.6407245 ]
Smallest Loss: 0.12336676138428952 loss at index 9999
Smallest Test Loss: 0.38417809917914236 loss at index 210
[I 2025-02-17 18:25:40,102] Trial 17 finished with value: 0.26805509388335913 and parameters: {'lambda_reg': 0.00031925018695900723}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.38842849 -1.50812766 -1.47271573 -2.13695011 -0.23688361 0.48975028
2.54744623 0.00692498 0.91008099 -0.04839568]
Smallest Loss: 0.11114223485702043 loss at index 9999
Smallest Test Loss: 0.26805509388335913 loss at index 116
[I 2025-02-17 18:25:40,561] Trial 18 finished with value: 0.1502167211741257 and parameters: {'lambda_reg': 0.001207040340174549}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.35107439 -1.51010501 -2.00022006 -0.04298342 0.02663998 -1.58828993
0.40325755 1.21405552 0.90100478 1.18876891]
Smallest Loss: 0.13016743652431728 loss at index 9999
Smallest Test Loss: 0.1502167211741257 loss at index 653
[I 2025-02-17 18:25:41,205] Trial 19 finished with value: 0.15065376841297723 and parameters: {'lambda_reg': 0.006358048627690284}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.18999832 -1.15296319 -1.77309694 -1.01223795 -0.24954774 0.26367397
0.63009309 0.81334958 0.48079923 0.64904513]
Smallest Loss: 0.17169814124057203 loss at index 9999
Smallest Test Loss: 0.15065376841297723 loss at index 907
[I 2025-02-17 18:25:41,635] Trial 20 finished with value: 0.22935194835783512 and parameters: {'lambda_reg': 0.0025495711664685187}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.27312955 -1.29709437 -1.48314805 -1.32385483 -1.16416981 0.83651835
0.96501531 0.63775207 1.26011158 0.20880487]
Smallest Loss: 0.14033273902962862 loss at index 9999
Smallest Test Loss: 0.22935194835783512 loss at index 379
[I 2025-02-17 18:25:42,069] Trial 21 finished with value: 0.15013153939524324 and parameters: {'lambda_reg': 0.00026115142586954123}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.52147572 -2.25089985 -1.23349197 -0.50021773 -0.07772904 -0.52584946
0.50074312 0.53790993 1.65826381 0.30280693]
Smallest Loss: 0.11698130535007868 loss at index 9999
Smallest Test Loss: 0.15013153939524324 loss at index 117
[I 2025-02-17 18:25:42,498] Trial 22 finished with value: 0.13972618291642752 and parameters: {'lambda_reg': 0.00017602881808594965}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.39137104 -1.45155365 -2.24858128 -0.17046355 -0.99797862 -0.07200211
0.80476337 1.77042135 1.01207197 -0.08979457]
Smallest Loss: 0.11028388356672039 loss at index 9999
Smallest Test Loss: 0.13972618291642752 loss at index 880
[I 2025-02-17 18:25:42,955] Trial 23 finished with value: 0.19774991117601984 and parameters: {'lambda_reg': 0.0007478861868999428}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.4272269 -1.95529154 -0.85524885 -1.55841138 -0.12315809 -0.40855319
1.02590412 1.13333651 0.24067715 1.01273616]
Smallest Loss: 0.12059603259591022 loss at index 9999
Smallest Test Loss: 0.19774991117601984 loss at index 55
[I 2025-02-17 18:25:43,399] Trial 24 finished with value: 0.14984873749030406 and parameters: {'lambda_reg': 0.00024722641828542693}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.38527374 -1.94550384 -0.13311081 -1.99720579 -1.66972522 1.49363516
-0.48613642 1.95933266 -0.79309391 2.16073995]
Smallest Loss: 0.11911804371129281 loss at index 9999
Smallest Test Loss: 0.14984873749030406 loss at index 761
[I 2025-02-17 18:25:43,842] Trial 25 finished with value: 0.15386601091709792 and parameters: {'lambda_reg': 0.0012166799254156424}. Best is trial 13 with value: 0.12145689134192648.
Final weights: [ 1.37872524 -1.52132398 -2.11518844 -0.02267119 -1.43026771 0.98415076
-0.11180553 1.57948579 1.22105504 -0.03854931]
Smallest Loss: 0.12798424650251297 loss at index 9999
Smallest Test Loss: 0.15386601091709792 loss at index 602
[I 2025-02-17 18:25:44,323] Trial 26 finished with value: 0.10710861641647884 and parameters: {'lambda_reg': 0.0002910136121560851}. Best is trial 26 with value: 0.10710861641647884.
Final weights: [ 1.179562 -0.40699571 -2.76943241 -1.57962835 -0.83865038 1.46091299
0.73390297 0.56554726 0.54579933 1.09064323]
Smallest Loss: 0.1103042193751269 loss at index 9999
Smallest Test Loss: 0.10710861641647884 loss at index 246
[I 2025-02-17 18:25:44,800] Trial 27 finished with value: 0.19300989244914554 and parameters: {'lambda_reg': 0.0005257496563296766}. Best is trial 26 with value: 0.10710861641647884.
Final weights: [ 1.21543381 -0.62894979 -2.38440757 -1.92679961 -0.62563298 1.01321313
1.02230969 1.39972117 0.72127024 0.15919262]
Smallest Loss: 0.112250696830999 loss at index 9999
Smallest Test Loss: 0.19300989244914554 loss at index 237
[I 2025-02-17 18:25:45,266] Trial 28 finished with value: 0.0835593658374644 and parameters: {'lambda_reg': 0.0038163140595615526}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.2977523 -1.54545044 -1.41275807 -0.92333333 -0.46641811 0.42947817
0.23068725 0.67543139 0.34986904 1.24780922]
Smallest Loss: 0.1501523645455812 loss at index 9999
Smallest Test Loss: 0.0835593658374644 loss at index 0
[I 2025-02-17 18:25:45,711] Trial 29 finished with value: 0.20262097696479126 and parameters: {'lambda_reg': 0.0034418777618591373}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.33815315 -1.69274176 -1.54783167 -0.02343355 -0.9852013 -0.71992138
0.74910415 1.5926281 1.08359629 0.08922035]
Smallest Loss: 0.15767387818542675 loss at index 9999
Smallest Test Loss: 0.20262097696479126 loss at index 1009
[I 2025-02-17 18:25:46,182] Trial 30 finished with value: 0.27971745046135993 and parameters: {'lambda_reg': 0.009054946537501206}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.20636456 -1.54524197 -1.21089419 -0.66787509 -0.34612356 -0.07436692
0.52018201 0.77920122 0.40679025 0.72187849]
Smallest Loss: 0.19301786844325924 loss at index 9999
Smallest Test Loss: 0.27971745046135993 loss at index 148
[I 2025-02-17 18:25:46,635] Trial 31 finished with value: 0.16591101019528096 and parameters: {'lambda_reg': 0.0018487990453805877}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.30304617 -1.19783703 -2.23549815 -0.73788651 -0.62430115 0.92976112
-0.08676684 1.03578864 1.39717014 0.13593012]
Smallest Loss: 0.13190961508230709 loss at index 9999
Smallest Test Loss: 0.16591101019528096 loss at index 110
[I 2025-02-17 18:25:47,202] Trial 32 finished with value: 0.18144892405890162 and parameters: {'lambda_reg': 0.000596437633826167}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.50581269 -2.11732727 -1.39466214 -0.70950232 -0.79098473 1.54959867
-0.43952409 0.52570629 2.39952062 -0.61184394]
Smallest Loss: 0.1226185169937624 loss at index 9999
Smallest Test Loss: 0.18144892405890162 loss at index 324
[I 2025-02-17 18:25:47,657] Trial 33 finished with value: 0.12976855845174778 and parameters: {'lambda_reg': 0.00033806107770465414}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.33187612 -1.43866961 -1.23304106 -1.603536 -0.64443061 -1.17263751
1.99962327 2.40466554 -0.38752106 0.70874628]
Smallest Loss: 0.11502867104835734 loss at index 9999
Smallest Test Loss: 0.12976855845174778 loss at index 182
[I 2025-02-17 18:25:48,129] Trial 34 finished with value: 0.17128096058394646 and parameters: {'lambda_reg': 0.0011455811743896983}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.45769107 -1.89027593 -1.60802622 -1.19635295 0.3172238 0.72389924
0.84665161 -0.44025778 0.92090643 0.77783559]
Smallest Loss: 0.1253878026647496 loss at index 9999
Smallest Test Loss: 0.17128096058394646 loss at index 345
[I 2025-02-17 18:25:48,578] Trial 35 finished with value: 0.13402164572819739 and parameters: {'lambda_reg': 0.00018744558610238083}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.27695248 -1.18868382 -1.64181271 -0.73515291 -1.81386157 0.82016329
-1.10485779 2.75927111 0.43470986 1.18188013]
Smallest Loss: 0.11564239049180272 loss at index 9999
Smallest Test Loss: 0.13402164572819739 loss at index 239
[I 2025-02-17 18:25:49,006] Trial 36 finished with value: 0.24312802169308223 and parameters: {'lambda_reg': 0.022315360236053364}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 0.94016815 -1.08127734 -1.05211825 -0.6651139 -0.27642972 0.04583092
0.24162084 0.40462089 0.50490846 0.59139493]
Smallest Loss: 0.26618518510581557 loss at index 9999
Smallest Test Loss: 0.24312802169308223 loss at index 886
[I 2025-02-17 18:25:49,474] Trial 37 finished with value: 0.1772976620894902 and parameters: {'lambda_reg': 0.004306705143057361}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.29624153 -1.63774038 -1.21100195 -0.95838798 -0.30177795 0.3627908
0.02942032 0.17193861 0.64669113 1.47838311]
Smallest Loss: 0.15751466455871832 loss at index 9999
Smallest Test Loss: 0.1772976620894902 loss at index 688
[I 2025-02-17 18:25:49,903] Trial 38 finished with value: 0.189371282647341 and parameters: {'lambda_reg': 0.012966531658960829}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.09553655 -1.29383725 -1.21791007 -0.73585394 -0.3032443 0.11768841
0.29378004 0.42866366 0.6063125 0.75423006]
Smallest Loss: 0.21691407697882703 loss at index 9999
Smallest Test Loss: 0.189371282647341 loss at index 141
[I 2025-02-17 18:25:50,333] Trial 39 finished with value: 0.29917985063688024 and parameters: {'lambda_reg': 0.03819431653793921}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 0.7704983 -0.88593935 -0.84608534 -0.53343522 -0.23587642 -0.00386014
0.16892096 0.29177968 0.3815651 0.44662573]
Smallest Loss: 0.32345339458225564 loss at index 9999
Smallest Test Loss: 0.29917985063688024 loss at index 9999
[I 2025-02-17 18:25:50,783] Trial 40 finished with value: 0.17818488295842266 and parameters: {'lambda_reg': 0.00205033001554624}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.39910736 -2.01781973 -0.54623643 -1.45982591 -1.10472708 0.94446943
0.16364616 1.33832114 0.35967677 0.83488483]
Smallest Loss: 0.13943563402888337 loss at index 9999
Smallest Test Loss: 0.17818488295842266 loss at index 585
[I 2025-02-17 18:25:51,280] Trial 41 finished with value: 0.21088666162048406 and parameters: {'lambda_reg': 0.00037128399345110906}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.52772802 -2.06207312 -2.24542459 0.32760811 0.32474394 0.45336508
-0.42847596 -0.04491128 0.08065836 1.98997842]
Smallest Loss: 0.12106016295566488 loss at index 9999
Smallest Test Loss: 0.21088666162048406 loss at index 316
[I 2025-02-17 18:25:51,723] Trial 42 finished with value: 0.18519598190308587 and parameters: {'lambda_reg': 0.0001847926180330171}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.36290973 -1.48767693 -1.87774097 -0.02757566 -1.85018493 0.60476916
0.73413562 0.89675479 -0.47588967 2.0890597 ]
Smallest Loss: 0.11443872225361529 loss at index 9999
Smallest Test Loss: 0.18519598190308587 loss at index 148
[I 2025-02-17 18:25:52,197] Trial 43 finished with value: 0.2505904874855082 and parameters: {'lambda_reg': 0.0006755383860086079}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.50288734 -2.06816372 -1.70142978 -0.56367064 0.83542177 -1.0019202
0.48012503 1.10710123 0.95911443 0.3680216 ]
Smallest Loss: 0.12211279382336229 loss at index 9999
Smallest Test Loss: 0.2505904874855082 loss at index 242
[I 2025-02-17 18:25:52,851] Trial 44 finished with value: 0.1709694794529396 and parameters: {'lambda_reg': 0.0004515748067265874}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.49212313 -2.22624461 -1.10073431 -0.1187369 -0.97354009 -0.10703135
-0.30756296 1.9671578 -0.07993399 1.39537143]
Smallest Loss: 0.1214553589420023 loss at index 9999
Smallest Test Loss: 0.1709694794529396 loss at index 139
[I 2025-02-17 18:25:53,296] Trial 45 finished with value: 0.25307557595150165 and parameters: {'lambda_reg': 0.2138986320032314}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 0.26745158 -0.30431077 -0.30359022 -0.21578347 -0.12950393 -0.06019138
-0.00756916 0.03172065 0.06102171 0.08299992]
Smallest Loss: 0.48980164259197656 loss at index 5350
Smallest Test Loss: 0.25307557595150165 loss at index 7427
[I 2025-02-17 18:25:53,759] Trial 46 finished with value: 0.14537539549142434 and parameters: {'lambda_reg': 0.0001012853583130678}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.38708284 -1.79411097 -0.88670668 -1.25966949 -1.03891147 0.8179118
-0.35232681 -0.06002593 2.00369837 1.15795818]
Smallest Loss: 0.11477855310050401 loss at index 9999
Smallest Test Loss: 0.14537539549142434 loss at index 700
[I 2025-02-17 18:25:54,264] Trial 47 finished with value: 0.1306465128848684 and parameters: {'lambda_reg': 0.0008824907066099216}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.22101522 -0.99995697 -1.66910908 -1.1044127 -0.95338438 -0.80985942
0.67714878 1.57096548 1.06617239 0.98073173]
Smallest Loss: 0.12363205219454936 loss at index 9999
Smallest Test Loss: 0.1306465128848684 loss at index 804
[I 2025-02-17 18:25:54,772] Trial 48 finished with value: 0.13135031648006235 and parameters: {'lambda_reg': 0.00029458556994360515}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.3394964 -1.35406494 -1.73693576 -1.01539464 -1.0206876 -0.32869114
1.77070536 1.47269821 0.17951299 0.65375309]
Smallest Loss: 0.11191863009726317 loss at index 9999
Smallest Test Loss: 0.13135031648006235 loss at index 365
[I 2025-02-17 18:25:55,246] Trial 49 finished with value: 0.1743144267347191 and parameters: {'lambda_reg': 0.00016030982608409487}. Best is trial 28 with value: 0.0835593658374644.
Final weights: [ 1.36072738 -1.44882643 -1.59555685 -1.5074025 -0.25631993 0.60601028
-0.11167082 0.83680725 1.84559714 0.23271402]
Smallest Loss: 0.11070035843305708 loss at index 9999
Smallest Test Loss: 0.1743144267347191 loss at index 335
Best lambda_reg: 0.0038163140595615526
Best test loss: 0.0835593658374644
Best lambda_reg: 0.0038163140595615526
Best test loss: 0.0835593658374644
/tmp/ipykernel_69330/2963884763.py:19: ExperimentalWarning: plot_optimization_history is experimental (supported from v2.2.0). The interface can change in the future.
optuna.visualization.matplotlib.plot_optimization_history(study)