| conv1/kernel:0 | 
(7, 7, 3, 64) | 
-0.8616 | 
+0.8539 | 
+0.1314 | 
| bn_conv1/gamma:0 | 
(64,) | 
+0.0843 | 
+2.6420 | 
+0.5087 | 
| bn_conv1/beta:0 | 
(64,) | 
-2.4174 | 
+5.4189 | 
+1.9981 | 
| bn_conv1/moving_mean:0 | 
(64,) | 
-172.9685 | 
+94.5717 | 
+42.0063 | 
| bn_conv1/moving_variance:0*** Overflow? | 
(64,) | 
+0.0000 | 
+110557.9688 | 
+16228.7607 | 
| res2a_branch2a/kernel:0 | 
(1, 1, 64, 64) | 
-0.6603 | 
+0.3208 | 
+0.0768 | 
| bn2a_branch2a/gamma:0 | 
(64,) | 
+0.2189 | 
+1.8654 | 
+0.4149 | 
| bn2a_branch2a/beta:0 | 
(64,) | 
-2.1375 | 
+3.7690 | 
+1.1904 | 
| bn2a_branch2a/moving_mean:0 | 
(64,) | 
-6.3118 | 
+7.4370 | 
+2.4037 | 
| bn2a_branch2a/moving_variance:0 | 
(64,) | 
+0.0000 | 
+8.8091 | 
+2.1498 | 
| res2a_branch2b/kernel:0 | 
(3, 3, 64, 64) | 
-0.3813 | 
+0.5123 | 
+0.0323 | 
| bn2a_branch2b/gamma:0 | 
(64,) | 
+0.3195 | 
+1.7454 | 
+0.3143 | 
| bn2a_branch2b/beta:0 | 
(64,) | 
-1.9530 | 
+4.5882 | 
+1.5261 | 
| bn2a_branch2b/moving_mean:0 | 
(64,) | 
-6.7890 | 
+4.2754 | 
+2.2064 | 
| bn2a_branch2b/moving_variance:0 | 
(64,) | 
+0.0000 | 
+5.5464 | 
+1.1573 | 
| res2a_branch2c/kernel:0 | 
(1, 1, 64, 256) | 
-0.4412 | 
+0.3600 | 
+0.0411 | 
| res2a_branch1/kernel:0 | 
(1, 1, 64, 256) | 
-0.8513 | 
+0.7543 | 
+0.0699 | 
| bn2a_branch2c/gamma:0 | 
(256,) | 
-0.5887 | 
+3.2101 | 
+0.6259 | 
| bn2a_branch2c/beta:0 | 
(256,) | 
-1.1511 | 
+1.4415 | 
+0.4269 | 
| bn2a_branch2c/moving_mean:0 | 
(256,) | 
-4.2796 | 
+3.1055 | 
+1.0352 | 
| bn2a_branch2c/moving_variance:0 | 
(256,) | 
+0.0000 | 
+2.6966 | 
+0.4085 | 
| bn2a_branch1/gamma:0 | 
(256,) | 
+0.2415 | 
+3.5354 | 
+0.6298 | 
| bn2a_branch1/beta:0 | 
(256,) | 
-1.1511 | 
+1.4415 | 
+0.4269 | 
| bn2a_branch1/moving_mean:0 | 
(256,) | 
-8.1191 | 
+8.7749 | 
+2.0398 | 
| bn2a_branch1/moving_variance:0 | 
(256,) | 
+0.0000 | 
+10.3201 | 
+1.6540 | 
| res2b_branch2a/kernel:0 | 
(1, 1, 256, 64) | 
-0.2418 | 
+0.2263 | 
+0.0358 | 
| bn2b_branch2a/gamma:0 | 
(64,) | 
+0.2051 | 
+1.7890 | 
+0.3852 | 
| bn2b_branch2a/beta:0 | 
(64,) | 
-2.0730 | 
+1.6836 | 
+0.8930 | 
| bn2b_branch2a/moving_mean:0 | 
(64,) | 
-1.8157 | 
+1.7829 | 
+0.7466 | 
| bn2b_branch2a/moving_variance:0 | 
(64,) | 
+0.0000 | 
+3.2496 | 
+0.7830 | 
| res2b_branch2b/kernel:0 | 
(3, 3, 64, 64) | 
-0.5190 | 
+0.3431 | 
+0.0357 | 
| bn2b_branch2b/gamma:0 | 
(64,) | 
+0.5190 | 
+1.4828 | 
+0.2283 | 
| bn2b_branch2b/beta:0 | 
(64,) | 
-2.4756 | 
+2.7818 | 
+1.2069 | 
| bn2b_branch2b/moving_mean:0 | 
(64,) | 
-1.8361 | 
+0.9368 | 
+0.5723 | 
| bn2b_branch2b/moving_variance:0 | 
(64,) | 
+0.0938 | 
+1.0783 | 
+0.2077 | 
| res2b_branch2c/kernel:0 | 
(1, 1, 64, 256) | 
-0.3330 | 
+0.3228 | 
+0.0414 | 
| bn2b_branch2c/gamma:0 | 
(256,) | 
-0.0329 | 
+1.8095 | 
+0.4257 | 
| bn2b_branch2c/beta:0 | 
(256,) | 
-1.3059 | 
+0.9721 | 
+0.3463 | 
| bn2b_branch2c/moving_mean:0 | 
(256,) | 
-2.5336 | 
+2.1111 | 
+0.5033 | 
| bn2b_branch2c/moving_variance:0 | 
(256,) | 
+0.0000 | 
+0.2187 | 
+0.0333 | 
| res2c_branch2a/kernel:0 | 
(1, 1, 256, 64) | 
-0.3040 | 
+0.2175 | 
+0.0412 | 
| bn2c_branch2a/gamma:0 | 
(64,) | 
+0.2683 | 
+1.8338 | 
+0.2863 | 
| bn2c_branch2a/beta:0 | 
(64,) | 
-2.0358 | 
+0.8512 | 
+0.7946 | 
| bn2c_branch2a/moving_mean:0 | 
(64,) | 
-4.7340 | 
+1.6664 | 
+1.2255 | 
| bn2c_branch2a/moving_variance:0 | 
(64,) | 
+0.0000 | 
+3.4985 | 
+0.7644 | 
| res2c_branch2b/kernel:0 | 
(3, 3, 64, 64) | 
-0.2020 | 
+0.2138 | 
+0.0378 | 
| bn2c_branch2b/gamma:0 | 
(64,) | 
+0.6155 | 
+1.5482 | 
+0.2177 | 
| bn2c_branch2b/beta:0 | 
(64,) | 
-2.4321 | 
+1.8318 | 
+0.6352 | 
| bn2c_branch2b/moving_mean:0 | 
(64,) | 
-1.4939 | 
+0.1422 | 
+0.2628 | 
| bn2c_branch2b/moving_variance:0 | 
(64,) | 
+0.2278 | 
+2.0831 | 
+0.3304 | 
| res2c_branch2c/kernel:0 | 
(1, 1, 64, 256) | 
-0.2842 | 
+0.2529 | 
+0.0430 | 
| bn2c_branch2c/gamma:0 | 
(256,) | 
-0.0200 | 
+2.3871 | 
+0.5297 | 
| bn2c_branch2c/beta:0 | 
(256,) | 
-1.6989 | 
+1.1085 | 
+0.4321 | 
| bn2c_branch2c/moving_mean:0 | 
(256,) | 
-1.2794 | 
+0.7256 | 
+0.2929 | 
| bn2c_branch2c/moving_variance:0 | 
(256,) | 
+0.0010 | 
+0.7414 | 
+0.1125 | 
| res3a_branch2a/kernel:0 | 
(1, 1, 256, 128) | 
-0.5027 | 
+0.6187 | 
+0.0304 | 
| bn3a_branch2a/gamma:0 | 
(128,) | 
+0.4905 | 
+1.3262 | 
+0.1895 | 
| bn3a_branch2a/beta:0 | 
(128,) | 
-1.8565 | 
+2.5853 | 
+0.7641 | 
| bn3a_branch2a/moving_mean:0 | 
(128,) | 
-4.2267 | 
+2.1703 | 
+0.9005 | 
| bn3a_branch2a/moving_variance:0 | 
(128,) | 
+0.0545 | 
+8.9011 | 
+1.2696 | 
| res3a_branch2b/kernel:0 | 
(3, 3, 128, 128) | 
-0.3236 | 
+0.4518 | 
+0.0223 | 
| bn3a_branch2b/gamma:0 | 
(128,) | 
+0.4706 | 
+1.8430 | 
+0.2200 | 
| bn3a_branch2b/beta:0 | 
(128,) | 
-1.9615 | 
+1.9157 | 
+0.7933 | 
| bn3a_branch2b/moving_mean:0 | 
(128,) | 
-6.0335 | 
+3.2213 | 
+1.9778 | 
| bn3a_branch2b/moving_variance:0 | 
(128,) | 
+0.0001 | 
+6.6136 | 
+0.8450 | 
| res3a_branch2c/kernel:0 | 
(1, 1, 128, 512) | 
-0.4927 | 
+0.3402 | 
+0.0283 | 
| res3a_branch1/kernel:0 | 
(1, 1, 256, 512) | 
-0.4507 | 
+0.6643 | 
+0.0290 | 
| bn3a_branch2c/gamma:0 | 
(512,) | 
-0.0033 | 
+3.7310 | 
+0.6223 | 
| bn3a_branch2c/beta:0 | 
(512,) | 
-0.9694 | 
+1.4581 | 
+0.3727 | 
| bn3a_branch2c/moving_mean:0 | 
(512,) | 
-1.5891 | 
+1.4301 | 
+0.3907 | 
| bn3a_branch2c/moving_variance:0 | 
(512,) | 
+0.0002 | 
+0.8632 | 
+0.1073 | 
| bn3a_branch1/gamma:0 | 
(512,) | 
-0.0138 | 
+2.7207 | 
+0.4812 | 
| bn3a_branch1/beta:0 | 
(512,) | 
-0.9694 | 
+1.4580 | 
+0.3727 | 
| bn3a_branch1/moving_mean:0 | 
(512,) | 
-3.7382 | 
+2.8448 | 
+0.8043 | 
| bn3a_branch1/moving_variance:0 | 
(512,) | 
+0.0029 | 
+5.7492 | 
+0.6063 | 
| res3b_branch2a/kernel:0 | 
(1, 1, 512, 128) | 
-0.1992 | 
+0.1954 | 
+0.0252 | 
| bn3b_branch2a/gamma:0 | 
(128,) | 
+0.5946 | 
+1.5472 | 
+0.1807 | 
| bn3b_branch2a/beta:0 | 
(128,) | 
-3.9918 | 
+0.6877 | 
+0.6492 | 
| bn3b_branch2a/moving_mean:0 | 
(128,) | 
-3.0865 | 
+1.0082 | 
+0.6388 | 
| bn3b_branch2a/moving_variance:0 | 
(128,) | 
+0.2999 | 
+3.6467 | 
+0.6298 | 
| res3b_branch2b/kernel:0 | 
(3, 3, 128, 128) | 
-0.2305 | 
+0.2760 | 
+0.0241 | 
| bn3b_branch2b/gamma:0 | 
(128,) | 
+0.4863 | 
+1.5054 | 
+0.2365 | 
| bn3b_branch2b/beta:0 | 
(128,) | 
-2.4436 | 
+1.4355 | 
+0.6833 | 
| bn3b_branch2b/moving_mean:0 | 
(128,) | 
-2.1539 | 
+1.4636 | 
+0.5130 | 
| bn3b_branch2b/moving_variance:0 | 
(128,) | 
+0.0961 | 
+1.6067 | 
+0.2474 | 
| res3b_branch2c/kernel:0 | 
(1, 1, 128, 512) | 
-0.3111 | 
+0.4652 | 
+0.0288 | 
| bn3b_branch2c/gamma:0 | 
(512,) | 
-0.0367 | 
+2.0281 | 
+0.4083 | 
| bn3b_branch2c/beta:0 | 
(512,) | 
-1.5916 | 
+1.1728 | 
+0.3779 | 
| bn3b_branch2c/moving_mean:0 | 
(512,) | 
-1.0827 | 
+0.6886 | 
+0.2301 | 
| bn3b_branch2c/moving_variance:0 | 
(512,) | 
+0.0002 | 
+0.2121 | 
+0.0303 | 
| res3c_branch2a/kernel:0 | 
(1, 1, 512, 128) | 
-0.2663 | 
+0.2643 | 
+0.0284 | 
| bn3c_branch2a/gamma:0 | 
(128,) | 
+0.5964 | 
+1.5047 | 
+0.1916 | 
| bn3c_branch2a/beta:0 | 
(128,) | 
-2.8335 | 
+0.7305 | 
+0.5454 | 
| bn3c_branch2a/moving_mean:0 | 
(128,) | 
-3.0245 | 
+1.7478 | 
+0.8335 | 
| bn3c_branch2a/moving_variance:0 | 
(128,) | 
+0.2705 | 
+3.8971 | 
+0.7585 | 
| res3c_branch2b/kernel:0 | 
(3, 3, 128, 128) | 
-0.2296 | 
+0.1968 | 
+0.0233 | 
| bn3c_branch2b/gamma:0 | 
(128,) | 
+0.4471 | 
+1.5901 | 
+0.2878 | 
| bn3c_branch2b/beta:0 | 
(128,) | 
-1.4295 | 
+1.3293 | 
+0.5597 | 
| bn3c_branch2b/moving_mean:0 | 
(128,) | 
-1.0368 | 
+0.7158 | 
+0.2785 | 
| bn3c_branch2b/moving_variance:0 | 
(128,) | 
+0.1252 | 
+0.9441 | 
+0.1439 | 
| res3c_branch2c/kernel:0 | 
(1, 1, 128, 512) | 
-0.3068 | 
+0.3730 | 
+0.0263 | 
| bn3c_branch2c/gamma:0 | 
(512,) | 
-0.0337 | 
+1.9127 | 
+0.3803 | 
| bn3c_branch2c/beta:0 | 
(512,) | 
-1.5568 | 
+0.8346 | 
+0.3645 | 
| bn3c_branch2c/moving_mean:0 | 
(512,) | 
-0.8692 | 
+0.7091 | 
+0.1843 | 
| bn3c_branch2c/moving_variance:0 | 
(512,) | 
+0.0002 | 
+0.1747 | 
+0.0270 | 
| res3d_branch2a/kernel:0 | 
(1, 1, 512, 128) | 
-0.2611 | 
+0.2868 | 
+0.0307 | 
| bn3d_branch2a/gamma:0 | 
(128,) | 
+0.6513 | 
+1.4620 | 
+0.1939 | 
| bn3d_branch2a/beta:0 | 
(128,) | 
-3.0044 | 
+0.6187 | 
+0.6454 | 
| bn3d_branch2a/moving_mean:0 | 
(128,) | 
-3.7891 | 
+2.2792 | 
+0.9724 | 
| bn3d_branch2a/moving_variance:0 | 
(128,) | 
+0.0035 | 
+3.3270 | 
+0.5634 | 
| res3d_branch2b/kernel:0 | 
(3, 3, 128, 128) | 
-0.1610 | 
+0.2406 | 
+0.0237 | 
| bn3d_branch2b/gamma:0 | 
(128,) | 
+0.6456 | 
+3.2960 | 
+0.2932 | 
| bn3d_branch2b/beta:0 | 
(128,) | 
-1.6672 | 
+1.5725 | 
+0.5648 | 
| bn3d_branch2b/moving_mean:0 | 
(128,) | 
-1.0483 | 
+0.3162 | 
+0.2877 | 
| bn3d_branch2b/moving_variance:0 | 
(128,) | 
+0.2354 | 
+1.6038 | 
+0.2114 | 
| res3d_branch2c/kernel:0 | 
(1, 1, 128, 512) | 
-0.2424 | 
+0.3360 | 
+0.0271 | 
| bn3d_branch2c/gamma:0 | 
(512,) | 
-0.0229 | 
+1.9388 | 
+0.5210 | 
| bn3d_branch2c/beta:0 | 
(512,) | 
-1.0656 | 
+0.9844 | 
+0.2739 | 
| bn3d_branch2c/moving_mean:0 | 
(512,) | 
-1.1224 | 
+0.4736 | 
+0.2424 | 
| bn3d_branch2c/moving_variance:0 | 
(512,) | 
+0.0002 | 
+0.4452 | 
+0.0605 | 
| res4a_branch2a/kernel:0 | 
(1, 1, 512, 256) | 
-0.2850 | 
+0.2532 | 
+0.0148 | 
| bn4a_branch2a/gamma:0 | 
(256,) | 
+0.4807 | 
+1.4740 | 
+0.1509 | 
| bn4a_branch2a/beta:0 | 
(256,) | 
-1.9598 | 
+1.1296 | 
+0.3918 | 
| bn4a_branch2a/moving_mean:0 | 
(256,) | 
-3.6537 | 
+1.2955 | 
+0.6511 | 
| bn4a_branch2a/moving_variance:0 | 
(256,) | 
+0.0614 | 
+2.4605 | 
+0.3051 | 
| res4a_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1724 | 
+0.1962 | 
+0.0106 | 
| bn4a_branch2b/gamma:0 | 
(256,) | 
+0.4749 | 
+1.5932 | 
+0.2005 | 
| bn4a_branch2b/beta:0 | 
(256,) | 
-2.6223 | 
+1.1253 | 
+0.4850 | 
| bn4a_branch2b/moving_mean:0 | 
(256,) | 
-2.6573 | 
+3.4857 | 
+0.5984 | 
| bn4a_branch2b/moving_variance:0 | 
(256,) | 
+0.1394 | 
+1.4291 | 
+0.2191 | 
| res4a_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.2826 | 
+0.1895 | 
+0.0140 | 
| res4a_branch1/kernel:0 | 
(1, 1, 512, 1024) | 
-0.3567 | 
+0.3337 | 
+0.0158 | 
| bn4a_branch2c/gamma:0 | 
(1024,) | 
-0.0100 | 
+2.8427 | 
+0.4587 | 
| bn4a_branch2c/beta:0 | 
(1024,) | 
-0.5290 | 
+2.0636 | 
+0.2888 | 
| bn4a_branch2c/moving_mean:0 | 
(1024,) | 
-0.4885 | 
+0.2798 | 
+0.0831 | 
| bn4a_branch2c/moving_variance:0 | 
(1024,) | 
+0.0000 | 
+0.1206 | 
+0.0119 | 
| bn4a_branch1/gamma:0 | 
(1024,) | 
+0.1721 | 
+4.0220 | 
+0.7190 | 
| bn4a_branch1/beta:0 | 
(1024,) | 
-0.5290 | 
+2.0638 | 
+0.2888 | 
| bn4a_branch1/moving_mean:0 | 
(1024,) | 
-5.8239 | 
+3.2843 | 
+0.9039 | 
| bn4a_branch1/moving_variance:0 | 
(1024,) | 
+0.0546 | 
+8.5205 | 
+0.6964 | 
| res4b_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1260 | 
+0.1778 | 
+0.0081 | 
| bn4b_branch2a/gamma:0 | 
(256,) | 
+0.4198 | 
+1.6067 | 
+0.1885 | 
| bn4b_branch2a/beta:0 | 
(256,) | 
-2.2254 | 
+2.0613 | 
+0.4898 | 
| bn4b_branch2a/moving_mean:0 | 
(256,) | 
-4.6812 | 
+2.7681 | 
+1.1843 | 
| bn4b_branch2a/moving_variance:0 | 
(256,) | 
+0.1327 | 
+11.9923 | 
+1.3851 | 
| res4b_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0965 | 
+0.1632 | 
+0.0072 | 
| bn4b_branch2b/gamma:0 | 
(256,) | 
+0.5049 | 
+1.4772 | 
+0.1899 | 
| bn4b_branch2b/beta:0 | 
(256,) | 
-1.6971 | 
+0.5928 | 
+0.4359 | 
| bn4b_branch2b/moving_mean:0 | 
(256,) | 
-5.7095 | 
+1.9171 | 
+0.8444 | 
| bn4b_branch2b/moving_variance:0 | 
(256,) | 
+0.0203 | 
+1.3132 | 
+0.2172 | 
| res4b_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1962 | 
+0.2793 | 
+0.0103 | 
| bn4b_branch2c/gamma:0 | 
(1024,) | 
-0.0006 | 
+3.1835 | 
+0.3656 | 
| bn4b_branch2c/beta:0 | 
(1024,) | 
-1.0684 | 
+0.9525 | 
+0.1818 | 
| bn4b_branch2c/moving_mean:0 | 
(1024,) | 
-0.4443 | 
+0.4752 | 
+0.0943 | 
| bn4b_branch2c/moving_variance:0 | 
(1024,) | 
+0.0000 | 
+0.1888 | 
+0.0161 | 
| res4c_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.0990 | 
+0.1245 | 
+0.0082 | 
| bn4c_branch2a/gamma:0 | 
(256,) | 
+0.5761 | 
+1.7694 | 
+0.1421 | 
| bn4c_branch2a/beta:0 | 
(256,) | 
-0.9332 | 
+1.3302 | 
+0.3766 | 
| bn4c_branch2a/moving_mean:0 | 
(256,) | 
-4.0562 | 
+2.6203 | 
+1.2418 | 
| bn4c_branch2a/moving_variance:0 | 
(256,) | 
+0.3526 | 
+5.5460 | 
+0.6766 | 
| res4c_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0971 | 
+0.1085 | 
+0.0074 | 
| bn4c_branch2b/gamma:0 | 
(256,) | 
+0.5058 | 
+1.2290 | 
+0.1501 | 
| bn4c_branch2b/beta:0 | 
(256,) | 
-1.4553 | 
+0.5811 | 
+0.3399 | 
| bn4c_branch2b/moving_mean:0 | 
(256,) | 
-3.4174 | 
+1.7898 | 
+0.5966 | 
| bn4c_branch2b/moving_variance:0 | 
(256,) | 
+0.0730 | 
+1.5945 | 
+0.1712 | 
| res4c_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1343 | 
+0.1620 | 
+0.0107 | 
| bn4c_branch2c/gamma:0 | 
(1024,) | 
+0.0047 | 
+2.2900 | 
+0.2671 | 
| bn4c_branch2c/beta:0 | 
(1024,) | 
-1.1121 | 
+0.7399 | 
+0.1807 | 
| bn4c_branch2c/moving_mean:0 | 
(1024,) | 
-0.3355 | 
+0.1449 | 
+0.0609 | 
| bn4c_branch2c/moving_variance:0 | 
(1024,) | 
+0.0003 | 
+0.0969 | 
+0.0076 | 
| res4d_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1154 | 
+0.1464 | 
+0.0103 | 
| bn4d_branch2a/gamma:0 | 
(256,) | 
+0.5715 | 
+1.4526 | 
+0.1505 | 
| bn4d_branch2a/beta:0 | 
(256,) | 
-1.3573 | 
+0.4802 | 
+0.3064 | 
| bn4d_branch2a/moving_mean:0 | 
(256,) | 
-3.2371 | 
+2.2156 | 
+0.9378 | 
| bn4d_branch2a/moving_variance:0 | 
(256,) | 
+0.3515 | 
+5.9965 | 
+0.7573 | 
| res4d_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0995 | 
+0.0993 | 
+0.0087 | 
| bn4d_branch2b/gamma:0 | 
(256,) | 
+0.4295 | 
+1.5526 | 
+0.1616 | 
| bn4d_branch2b/beta:0 | 
(256,) | 
-1.4477 | 
+0.3874 | 
+0.2842 | 
| bn4d_branch2b/moving_mean:0 | 
(256,) | 
-1.4094 | 
+0.7436 | 
+0.2812 | 
| bn4d_branch2b/moving_variance:0 | 
(256,) | 
+0.0523 | 
+0.4509 | 
+0.0769 | 
| res4d_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.2408 | 
+0.1240 | 
+0.0118 | 
| bn4d_branch2c/gamma:0 | 
(1024,) | 
+0.0455 | 
+2.8707 | 
+0.3316 | 
| bn4d_branch2c/beta:0 | 
(1024,) | 
-1.3654 | 
+0.5976 | 
+0.2313 | 
| bn4d_branch2c/moving_mean:0 | 
(1024,) | 
-0.3255 | 
+0.1030 | 
+0.0535 | 
| bn4d_branch2c/moving_variance:0 | 
(1024,) | 
+0.0017 | 
+0.1031 | 
+0.0077 | 
| res4e_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1464 | 
+0.1125 | 
+0.0101 | 
| bn4e_branch2a/gamma:0 | 
(256,) | 
+0.6457 | 
+1.3797 | 
+0.1243 | 
| bn4e_branch2a/beta:0 | 
(256,) | 
-1.0967 | 
+0.3581 | 
+0.2712 | 
| bn4e_branch2a/moving_mean:0 | 
(256,) | 
-4.3375 | 
+1.8791 | 
+1.1414 | 
| bn4e_branch2a/moving_variance:0 | 
(256,) | 
+0.3798 | 
+4.6768 | 
+0.6343 | 
| res4e_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0862 | 
+0.0903 | 
+0.0090 | 
| bn4e_branch2b/gamma:0 | 
(256,) | 
+0.5497 | 
+1.2982 | 
+0.1328 | 
| bn4e_branch2b/beta:0 | 
(256,) | 
-1.2916 | 
+0.2223 | 
+0.2549 | 
| bn4e_branch2b/moving_mean:0 | 
(256,) | 
-1.6195 | 
+0.8106 | 
+0.3150 | 
| bn4e_branch2b/moving_variance:0 | 
(256,) | 
+0.0594 | 
+0.9789 | 
+0.1007 | 
| res4e_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.2030 | 
+0.1746 | 
+0.0119 | 
| bn4e_branch2c/gamma:0 | 
(1024,) | 
+0.0241 | 
+1.7471 | 
+0.1844 | 
| bn4e_branch2c/beta:0 | 
(1024,) | 
-1.0605 | 
+0.4113 | 
+0.1782 | 
| bn4e_branch2c/moving_mean:0 | 
(1024,) | 
-0.2640 | 
+0.1132 | 
+0.0421 | 
| bn4e_branch2c/moving_variance:0 | 
(1024,) | 
+0.0009 | 
+0.0492 | 
+0.0041 | 
| res4f_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.0842 | 
+0.1227 | 
+0.0105 | 
| bn4f_branch2a/gamma:0 | 
(256,) | 
+0.7024 | 
+1.3934 | 
+0.1006 | 
| bn4f_branch2a/beta:0 | 
(256,) | 
-1.1660 | 
+0.3933 | 
+0.2485 | 
| bn4f_branch2a/moving_mean:0 | 
(256,) | 
-4.4642 | 
+2.1927 | 
+1.1421 | 
| bn4f_branch2a/moving_variance:0 | 
(256,) | 
+0.4538 | 
+4.7501 | 
+0.7294 | 
| res4f_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1032 | 
+0.0997 | 
+0.0095 | 
| bn4f_branch2b/gamma:0 | 
(256,) | 
+0.4258 | 
+1.2521 | 
+0.1110 | 
| bn4f_branch2b/beta:0 | 
(256,) | 
-1.4425 | 
+0.5213 | 
+0.2464 | 
| bn4f_branch2b/moving_mean:0 | 
(256,) | 
-1.8044 | 
+1.5505 | 
+0.3778 | 
| bn4f_branch2b/moving_variance:0 | 
(256,) | 
+0.0635 | 
+0.6795 | 
+0.0933 | 
| res4f_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1423 | 
+0.1278 | 
+0.0119 | 
| bn4f_branch2c/gamma:0 | 
(1024,) | 
+0.1776 | 
+1.6305 | 
+0.1749 | 
| bn4f_branch2c/beta:0 | 
(1024,) | 
-0.9891 | 
+0.3002 | 
+0.1423 | 
| bn4f_branch2c/moving_mean:0 | 
(1024,) | 
-0.1586 | 
+0.0747 | 
+0.0354 | 
| bn4f_branch2c/moving_variance:0 | 
(1024,) | 
+0.0012 | 
+0.0210 | 
+0.0024 | 
| res4g_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1148 | 
+0.2416 | 
+0.0107 | 
| bn4g_branch2a/gamma:0 | 
(256,) | 
+0.6074 | 
+1.2107 | 
+0.1073 | 
| bn4g_branch2a/beta:0 | 
(256,) | 
-1.2790 | 
+0.2364 | 
+0.2842 | 
| bn4g_branch2a/moving_mean:0 | 
(256,) | 
-4.3445 | 
+1.4500 | 
+1.0834 | 
| bn4g_branch2a/moving_variance:0 | 
(256,) | 
+0.3768 | 
+3.8029 | 
+0.7079 | 
| res4g_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1280 | 
+0.1199 | 
+0.0097 | 
| bn4g_branch2b/gamma:0 | 
(256,) | 
+0.4760 | 
+1.7497 | 
+0.1351 | 
| bn4g_branch2b/beta:0 | 
(256,) | 
-1.2725 | 
+0.1908 | 
+0.2716 | 
| bn4g_branch2b/moving_mean:0 | 
(256,) | 
-1.1725 | 
+1.0331 | 
+0.2961 | 
| bn4g_branch2b/moving_variance:0 | 
(256,) | 
+0.0579 | 
+0.7416 | 
+0.0856 | 
| res4g_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1498 | 
+0.2285 | 
+0.0118 | 
| bn4g_branch2c/gamma:0 | 
(1024,) | 
+0.0908 | 
+1.8260 | 
+0.1987 | 
| bn4g_branch2c/beta:0 | 
(1024,) | 
-0.9102 | 
+0.2949 | 
+0.1424 | 
| bn4g_branch2c/moving_mean:0 | 
(1024,) | 
-0.1887 | 
+0.0784 | 
+0.0394 | 
| bn4g_branch2c/moving_variance:0 | 
(1024,) | 
+0.0013 | 
+0.0316 | 
+0.0033 | 
| res4h_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1305 | 
+0.1624 | 
+0.0116 | 
| bn4h_branch2a/gamma:0 | 
(256,) | 
+0.6257 | 
+1.2189 | 
+0.0991 | 
| bn4h_branch2a/beta:0 | 
(256,) | 
-1.4250 | 
+0.0732 | 
+0.2633 | 
| bn4h_branch2a/moving_mean:0 | 
(256,) | 
-3.7871 | 
+2.4121 | 
+0.9370 | 
| bn4h_branch2a/moving_variance:0 | 
(256,) | 
+0.5296 | 
+3.3483 | 
+0.5827 | 
| res4h_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0986 | 
+0.1224 | 
+0.0102 | 
| bn4h_branch2b/gamma:0 | 
(256,) | 
+0.4840 | 
+1.4915 | 
+0.1486 | 
| bn4h_branch2b/beta:0 | 
(256,) | 
-1.5969 | 
+0.4351 | 
+0.2542 | 
| bn4h_branch2b/moving_mean:0 | 
(256,) | 
-1.0446 | 
+1.1061 | 
+0.2066 | 
| bn4h_branch2b/moving_variance:0 | 
(256,) | 
+0.0492 | 
+0.5152 | 
+0.0675 | 
| res4h_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1463 | 
+0.2364 | 
+0.0120 | 
| bn4h_branch2c/gamma:0 | 
(1024,) | 
+0.0535 | 
+2.4894 | 
+0.2982 | 
| bn4h_branch2c/beta:0 | 
(1024,) | 
-0.8032 | 
+0.3345 | 
+0.1533 | 
| bn4h_branch2c/moving_mean:0 | 
(1024,) | 
-0.2073 | 
+0.1215 | 
+0.0407 | 
| bn4h_branch2c/moving_variance:0 | 
(1024,) | 
+0.0012 | 
+0.0485 | 
+0.0043 | 
| res4i_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1310 | 
+0.2966 | 
+0.0130 | 
| bn4i_branch2a/gamma:0 | 
(256,) | 
+0.3535 | 
+1.0589 | 
+0.1278 | 
| bn4i_branch2a/beta:0 | 
(256,) | 
-1.4845 | 
+0.4568 | 
+0.2795 | 
| bn4i_branch2a/moving_mean:0 | 
(256,) | 
-4.1849 | 
+2.5485 | 
+1.1041 | 
| bn4i_branch2a/moving_variance:0 | 
(256,) | 
+0.7884 | 
+7.4350 | 
+0.6603 | 
| res4i_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1289 | 
+0.1534 | 
+0.0092 | 
| bn4i_branch2b/gamma:0 | 
(256,) | 
+0.5686 | 
+1.6406 | 
+0.1422 | 
| bn4i_branch2b/beta:0 | 
(256,) | 
-1.4987 | 
+0.4807 | 
+0.2660 | 
| bn4i_branch2b/moving_mean:0 | 
(256,) | 
-0.5127 | 
+0.1199 | 
+0.0935 | 
| bn4i_branch2b/moving_variance:0 | 
(256,) | 
+0.0143 | 
+0.1193 | 
+0.0159 | 
| res4i_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1553 | 
+0.1522 | 
+0.0118 | 
| bn4i_branch2c/gamma:0 | 
(1024,) | 
+0.0405 | 
+2.1795 | 
+0.1866 | 
| bn4i_branch2c/beta:0 | 
(1024,) | 
-0.5968 | 
+0.7084 | 
+0.1265 | 
| bn4i_branch2c/moving_mean:0 | 
(1024,) | 
-0.4519 | 
+0.1328 | 
+0.0659 | 
| bn4i_branch2c/moving_variance:0 | 
(1024,) | 
+0.0008 | 
+0.0992 | 
+0.0064 | 
| res4j_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1212 | 
+0.1714 | 
+0.0124 | 
| bn4j_branch2a/gamma:0 | 
(256,) | 
+0.5074 | 
+1.2941 | 
+0.1164 | 
| bn4j_branch2a/beta:0 | 
(256,) | 
-1.9232 | 
+0.2171 | 
+0.2896 | 
| bn4j_branch2a/moving_mean:0 | 
(256,) | 
-4.7605 | 
+1.3667 | 
+0.9790 | 
| bn4j_branch2a/moving_variance:0 | 
(256,) | 
+0.8111 | 
+8.3345 | 
+0.7015 | 
| res4j_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1000 | 
+0.2422 | 
+0.0102 | 
| bn4j_branch2b/gamma:0 | 
(256,) | 
+0.4069 | 
+1.4642 | 
+0.1343 | 
| bn4j_branch2b/beta:0 | 
(256,) | 
-1.9635 | 
+0.4987 | 
+0.3003 | 
| bn4j_branch2b/moving_mean:0 | 
(256,) | 
-1.0420 | 
+0.6202 | 
+0.2047 | 
| bn4j_branch2b/moving_variance:0 | 
(256,) | 
+0.0464 | 
+0.5519 | 
+0.0491 | 
| res4j_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1389 | 
+0.1597 | 
+0.0118 | 
| bn4j_branch2c/gamma:0 | 
(1024,) | 
+0.0293 | 
+2.1061 | 
+0.1991 | 
| bn4j_branch2c/beta:0 | 
(1024,) | 
-0.8361 | 
+0.1735 | 
+0.1254 | 
| bn4j_branch2c/moving_mean:0 | 
(1024,) | 
-0.2061 | 
+0.0772 | 
+0.0375 | 
| bn4j_branch2c/moving_variance:0 | 
(1024,) | 
+0.0003 | 
+0.0274 | 
+0.0028 | 
| res4k_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1359 | 
+0.1878 | 
+0.0112 | 
| bn4k_branch2a/gamma:0 | 
(256,) | 
+0.5420 | 
+1.2074 | 
+0.1235 | 
| bn4k_branch2a/beta:0 | 
(256,) | 
-1.7435 | 
+0.3985 | 
+0.3122 | 
| bn4k_branch2a/moving_mean:0 | 
(256,) | 
-6.0315 | 
+1.7842 | 
+1.1139 | 
| bn4k_branch2a/moving_variance:0 | 
(256,) | 
+0.3504 | 
+4.6503 | 
+0.6216 | 
| res4k_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0792 | 
+0.1220 | 
+0.0093 | 
| bn4k_branch2b/gamma:0 | 
(256,) | 
+0.4983 | 
+1.2338 | 
+0.1261 | 
| bn4k_branch2b/beta:0 | 
(256,) | 
-1.2916 | 
+0.1997 | 
+0.2615 | 
| bn4k_branch2b/moving_mean:0 | 
(256,) | 
-1.0697 | 
+1.5169 | 
+0.3087 | 
| bn4k_branch2b/moving_variance:0 | 
(256,) | 
+0.0201 | 
+0.4110 | 
+0.0620 | 
| res4k_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1248 | 
+0.2098 | 
+0.0111 | 
| bn4k_branch2c/gamma:0 | 
(1024,) | 
+0.1164 | 
+2.0104 | 
+0.2095 | 
| bn4k_branch2c/beta:0 | 
(1024,) | 
-1.6254 | 
+0.1871 | 
+0.1615 | 
| bn4k_branch2c/moving_mean:0 | 
(1024,) | 
-0.1643 | 
+0.0819 | 
+0.0371 | 
| bn4k_branch2c/moving_variance:0 | 
(1024,) | 
+0.0018 | 
+0.0433 | 
+0.0044 | 
| res4l_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.2063 | 
+0.1837 | 
+0.0132 | 
| bn4l_branch2a/gamma:0 | 
(256,) | 
+0.4153 | 
+1.5392 | 
+0.1226 | 
| bn4l_branch2a/beta:0 | 
(256,) | 
-1.8618 | 
+0.3083 | 
+0.3002 | 
| bn4l_branch2a/moving_mean:0 | 
(256,) | 
-4.3532 | 
+1.4638 | 
+1.0180 | 
| bn4l_branch2a/moving_variance:0 | 
(256,) | 
+0.6372 | 
+5.7646 | 
+0.7036 | 
| res4l_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1077 | 
+0.1703 | 
+0.0099 | 
| bn4l_branch2b/gamma:0 | 
(256,) | 
+0.3988 | 
+1.3548 | 
+0.1309 | 
| bn4l_branch2b/beta:0 | 
(256,) | 
-1.4917 | 
+0.4846 | 
+0.2733 | 
| bn4l_branch2b/moving_mean:0 | 
(256,) | 
-0.4929 | 
+0.3995 | 
+0.1252 | 
| bn4l_branch2b/moving_variance:0 | 
(256,) | 
+0.0217 | 
+0.2759 | 
+0.0259 | 
| res4l_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1198 | 
+0.1658 | 
+0.0120 | 
| bn4l_branch2c/gamma:0 | 
(1024,) | 
+0.0792 | 
+1.6846 | 
+0.1774 | 
| bn4l_branch2c/beta:0 | 
(1024,) | 
-1.0420 | 
+0.7085 | 
+0.1541 | 
| bn4l_branch2c/moving_mean:0 | 
(1024,) | 
-0.1533 | 
+0.0933 | 
+0.0373 | 
| bn4l_branch2c/moving_variance:0 | 
(1024,) | 
+0.0009 | 
+0.0339 | 
+0.0026 | 
| res4m_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.0796 | 
+0.1565 | 
+0.0116 | 
| bn4m_branch2a/gamma:0 | 
(256,) | 
+0.5385 | 
+1.1934 | 
+0.0998 | 
| bn4m_branch2a/beta:0 | 
(256,) | 
-1.3115 | 
+0.3087 | 
+0.2261 | 
| bn4m_branch2a/moving_mean:0 | 
(256,) | 
-5.8896 | 
+1.3802 | 
+1.0426 | 
| bn4m_branch2a/moving_variance:0 | 
(256,) | 
+0.5695 | 
+7.6590 | 
+0.7444 | 
| res4m_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1025 | 
+0.1319 | 
+0.0090 | 
| bn4m_branch2b/gamma:0 | 
(256,) | 
+0.5824 | 
+1.2019 | 
+0.1020 | 
| bn4m_branch2b/beta:0 | 
(256,) | 
-1.3820 | 
+0.1980 | 
+0.2375 | 
| bn4m_branch2b/moving_mean:0 | 
(256,) | 
-0.7877 | 
+0.6563 | 
+0.1876 | 
| bn4m_branch2b/moving_variance:0 | 
(256,) | 
+0.0295 | 
+0.3663 | 
+0.0473 | 
| res4m_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1435 | 
+0.1559 | 
+0.0111 | 
| bn4m_branch2c/gamma:0 | 
(1024,) | 
+0.1877 | 
+1.8117 | 
+0.1711 | 
| bn4m_branch2c/beta:0 | 
(1024,) | 
-0.7704 | 
+0.5870 | 
+0.1488 | 
| bn4m_branch2c/moving_mean:0 | 
(1024,) | 
-0.2008 | 
+0.0926 | 
+0.0429 | 
| bn4m_branch2c/moving_variance:0 | 
(1024,) | 
+0.0013 | 
+0.0343 | 
+0.0039 | 
| res4n_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1173 | 
+0.1577 | 
+0.0126 | 
| bn4n_branch2a/gamma:0 | 
(256,) | 
+0.4684 | 
+1.0960 | 
+0.1128 | 
| bn4n_branch2a/beta:0 | 
(256,) | 
-1.2844 | 
+0.0426 | 
+0.2344 | 
| bn4n_branch2a/moving_mean:0 | 
(256,) | 
-3.2392 | 
+1.7882 | 
+0.8253 | 
| bn4n_branch2a/moving_variance:0 | 
(256,) | 
+0.6329 | 
+3.4732 | 
+0.4616 | 
| res4n_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1209 | 
+0.1524 | 
+0.0087 | 
| bn4n_branch2b/gamma:0 | 
(256,) | 
+0.4896 | 
+1.2047 | 
+0.1105 | 
| bn4n_branch2b/beta:0 | 
(256,) | 
-1.0426 | 
+0.6021 | 
+0.2205 | 
| bn4n_branch2b/moving_mean:0 | 
(256,) | 
-0.3883 | 
+0.1123 | 
+0.0881 | 
| bn4n_branch2b/moving_variance:0 | 
(256,) | 
+0.0143 | 
+0.2724 | 
+0.0217 | 
| res4n_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.0969 | 
+0.1517 | 
+0.0107 | 
| bn4n_branch2c/gamma:0 | 
(1024,) | 
+0.1913 | 
+1.6900 | 
+0.1242 | 
| bn4n_branch2c/beta:0 | 
(1024,) | 
-0.7635 | 
+0.6491 | 
+0.1329 | 
| bn4n_branch2c/moving_mean:0 | 
(1024,) | 
-0.2299 | 
+0.1080 | 
+0.0471 | 
| bn4n_branch2c/moving_variance:0 | 
(1024,) | 
+0.0021 | 
+0.0429 | 
+0.0041 | 
| res4o_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.0868 | 
+0.1276 | 
+0.0122 | 
| bn4o_branch2a/gamma:0 | 
(256,) | 
+0.4140 | 
+1.0878 | 
+0.1046 | 
| bn4o_branch2a/beta:0 | 
(256,) | 
-1.5212 | 
+0.1588 | 
+0.2378 | 
| bn4o_branch2a/moving_mean:0 | 
(256,) | 
-6.5676 | 
+1.6475 | 
+1.1866 | 
| bn4o_branch2a/moving_variance:0 | 
(256,) | 
+0.6190 | 
+5.9674 | 
+0.6751 | 
| res4o_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0956 | 
+0.1297 | 
+0.0088 | 
| bn4o_branch2b/gamma:0 | 
(256,) | 
+0.5295 | 
+1.2251 | 
+0.1097 | 
| bn4o_branch2b/beta:0 | 
(256,) | 
-1.2628 | 
+0.4158 | 
+0.2264 | 
| bn4o_branch2b/moving_mean:0 | 
(256,) | 
-0.4420 | 
+0.3259 | 
+0.1114 | 
| bn4o_branch2b/moving_variance:0 | 
(256,) | 
+0.0193 | 
+0.1740 | 
+0.0210 | 
| res4o_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1526 | 
+0.1561 | 
+0.0108 | 
| bn4o_branch2c/gamma:0 | 
(1024,) | 
+0.2372 | 
+1.9252 | 
+0.1541 | 
| bn4o_branch2c/beta:0 | 
(1024,) | 
-0.8091 | 
+0.5670 | 
+0.1401 | 
| bn4o_branch2c/moving_mean:0 | 
(1024,) | 
-0.2384 | 
+0.1076 | 
+0.0495 | 
| bn4o_branch2c/moving_variance:0 | 
(1024,) | 
+0.0016 | 
+0.0486 | 
+0.0047 | 
| res4p_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1428 | 
+0.1984 | 
+0.0135 | 
| bn4p_branch2a/gamma:0 | 
(256,) | 
+0.5017 | 
+1.0527 | 
+0.0912 | 
| bn4p_branch2a/beta:0 | 
(256,) | 
-1.4882 | 
+0.0455 | 
+0.2393 | 
| bn4p_branch2a/moving_mean:0 | 
(256,) | 
-3.1050 | 
+2.3637 | 
+0.9707 | 
| bn4p_branch2a/moving_variance:0 | 
(256,) | 
+0.7623 | 
+3.6884 | 
+0.5522 | 
| res4p_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.0858 | 
+0.1100 | 
+0.0100 | 
| bn4p_branch2b/gamma:0 | 
(256,) | 
+0.4397 | 
+1.4020 | 
+0.1318 | 
| bn4p_branch2b/beta:0 | 
(256,) | 
-1.4270 | 
+0.4049 | 
+0.2497 | 
| bn4p_branch2b/moving_mean:0 | 
(256,) | 
-0.4054 | 
+0.3653 | 
+0.1037 | 
| bn4p_branch2b/moving_variance:0 | 
(256,) | 
+0.0251 | 
+0.1553 | 
+0.0220 | 
| res4p_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1097 | 
+0.1687 | 
+0.0119 | 
| bn4p_branch2c/gamma:0 | 
(1024,) | 
+0.1811 | 
+1.7263 | 
+0.1962 | 
| bn4p_branch2c/beta:0 | 
(1024,) | 
-1.0450 | 
+0.3895 | 
+0.1635 | 
| bn4p_branch2c/moving_mean:0 | 
(1024,) | 
-0.2053 | 
+0.1271 | 
+0.0407 | 
| bn4p_branch2c/moving_variance:0 | 
(1024,) | 
+0.0015 | 
+0.0479 | 
+0.0040 | 
| res4q_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1232 | 
+0.2498 | 
+0.0136 | 
| bn4q_branch2a/gamma:0 | 
(256,) | 
+0.3415 | 
+1.0128 | 
+0.1070 | 
| bn4q_branch2a/beta:0 | 
(256,) | 
-1.5989 | 
+0.3609 | 
+0.2903 | 
| bn4q_branch2a/moving_mean:0 | 
(256,) | 
-5.2214 | 
+2.3356 | 
+1.1035 | 
| bn4q_branch2a/moving_variance:0 | 
(256,) | 
+0.6609 | 
+11.6783 | 
+0.9515 | 
| res4q_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1798 | 
+0.1955 | 
+0.0088 | 
| bn4q_branch2b/gamma:0 | 
(256,) | 
+0.6543 | 
+1.4769 | 
+0.1200 | 
| bn4q_branch2b/beta:0 | 
(256,) | 
-1.1978 | 
+0.3759 | 
+0.2500 | 
| bn4q_branch2b/moving_mean:0 | 
(256,) | 
-0.3519 | 
+0.1123 | 
+0.0780 | 
| bn4q_branch2b/moving_variance:0 | 
(256,) | 
+0.0133 | 
+0.1143 | 
+0.0136 | 
| res4q_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1707 | 
+0.1696 | 
+0.0116 | 
| bn4q_branch2c/gamma:0 | 
(1024,) | 
+0.0371 | 
+2.1323 | 
+0.2144 | 
| bn4q_branch2c/beta:0 | 
(1024,) | 
-0.7875 | 
+0.3563 | 
+0.1508 | 
| bn4q_branch2c/moving_mean:0 | 
(1024,) | 
-0.3719 | 
+0.2027 | 
+0.0712 | 
| bn4q_branch2c/moving_variance:0 | 
(1024,) | 
+0.0013 | 
+0.0541 | 
+0.0063 | 
| res4r_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1752 | 
+0.2489 | 
+0.0135 | 
| bn4r_branch2a/gamma:0 | 
(256,) | 
+0.2799 | 
+0.9274 | 
+0.1076 | 
| bn4r_branch2a/beta:0 | 
(256,) | 
-1.3579 | 
+0.2758 | 
+0.2674 | 
| bn4r_branch2a/moving_mean:0 | 
(256,) | 
-2.7110 | 
+3.0688 | 
+0.9259 | 
| bn4r_branch2a/moving_variance:0 | 
(256,) | 
+0.8098 | 
+9.7240 | 
+0.7793 | 
| res4r_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1313 | 
+0.1872 | 
+0.0085 | 
| bn4r_branch2b/gamma:0 | 
(256,) | 
+0.5145 | 
+1.4675 | 
+0.1384 | 
| bn4r_branch2b/beta:0 | 
(256,) | 
-0.9184 | 
+0.6886 | 
+0.2130 | 
| bn4r_branch2b/moving_mean:0 | 
(256,) | 
-0.2939 | 
+0.1038 | 
+0.0677 | 
| bn4r_branch2b/moving_variance:0 | 
(256,) | 
+0.0066 | 
+0.0804 | 
+0.0106 | 
| res4r_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.0867 | 
+0.1725 | 
+0.0110 | 
| bn4r_branch2c/gamma:0 | 
(1024,) | 
+0.1375 | 
+1.7613 | 
+0.1524 | 
| bn4r_branch2c/beta:0 | 
(1024,) | 
-0.7547 | 
+0.3295 | 
+0.1355 | 
| bn4r_branch2c/moving_mean:0 | 
(1024,) | 
-0.2626 | 
+0.1839 | 
+0.0649 | 
| bn4r_branch2c/moving_variance:0 | 
(1024,) | 
+0.0028 | 
+0.0670 | 
+0.0051 | 
| res4s_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1282 | 
+0.1822 | 
+0.0127 | 
| bn4s_branch2a/gamma:0 | 
(256,) | 
+0.3420 | 
+0.9798 | 
+0.1074 | 
| bn4s_branch2a/beta:0 | 
(256,) | 
-1.2975 | 
+0.5379 | 
+0.2706 | 
| bn4s_branch2a/moving_mean:0 | 
(256,) | 
-8.8698 | 
+2.0926 | 
+1.2141 | 
| bn4s_branch2a/moving_variance:0 | 
(256,) | 
+0.6463 | 
+17.2415 | 
+1.1652 | 
| res4s_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.2004 | 
+0.1857 | 
+0.0084 | 
| bn4s_branch2b/gamma:0 | 
(256,) | 
+0.5218 | 
+1.2066 | 
+0.1056 | 
| bn4s_branch2b/beta:0 | 
(256,) | 
-1.1360 | 
+0.3336 | 
+0.2261 | 
| bn4s_branch2b/moving_mean:0 | 
(256,) | 
-0.4850 | 
+0.1296 | 
+0.0932 | 
| bn4s_branch2b/moving_variance:0 | 
(256,) | 
+0.0122 | 
+0.0847 | 
+0.0115 | 
| res4s_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1153 | 
+0.1679 | 
+0.0109 | 
| bn4s_branch2c/gamma:0 | 
(1024,) | 
+0.1504 | 
+1.7503 | 
+0.1436 | 
| bn4s_branch2c/beta:0 | 
(1024,) | 
-0.7774 | 
+0.4413 | 
+0.1241 | 
| bn4s_branch2c/moving_mean:0 | 
(1024,) | 
-0.2327 | 
+0.1329 | 
+0.0533 | 
| bn4s_branch2c/moving_variance:0 | 
(1024,) | 
+0.0022 | 
+0.0453 | 
+0.0037 | 
| res4t_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1595 | 
+0.1765 | 
+0.0128 | 
| bn4t_branch2a/gamma:0 | 
(256,) | 
+0.4376 | 
+1.2511 | 
+0.1069 | 
| bn4t_branch2a/beta:0 | 
(256,) | 
-1.1352 | 
+0.2663 | 
+0.2456 | 
| bn4t_branch2a/moving_mean:0 | 
(256,) | 
-6.3550 | 
+2.2208 | 
+1.3414 | 
| bn4t_branch2a/moving_variance:0 | 
(256,) | 
+0.7818 | 
+5.8100 | 
+0.6672 | 
| res4t_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1327 | 
+0.1067 | 
+0.0091 | 
| bn4t_branch2b/gamma:0 | 
(256,) | 
+0.4616 | 
+1.2523 | 
+0.1079 | 
| bn4t_branch2b/beta:0 | 
(256,) | 
-1.1122 | 
+0.6912 | 
+0.2212 | 
| bn4t_branch2b/moving_mean:0 | 
(256,) | 
-0.8846 | 
+0.4358 | 
+0.1821 | 
| bn4t_branch2b/moving_variance:0 | 
(256,) | 
+0.0364 | 
+0.3580 | 
+0.0398 | 
| res4t_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1665 | 
+0.1575 | 
+0.0114 | 
| bn4t_branch2c/gamma:0 | 
(1024,) | 
+0.2199 | 
+2.0075 | 
+0.1730 | 
| bn4t_branch2c/beta:0 | 
(1024,) | 
-0.7963 | 
+0.3039 | 
+0.1346 | 
| bn4t_branch2c/moving_mean:0 | 
(1024,) | 
-0.2121 | 
+0.1756 | 
+0.0493 | 
| bn4t_branch2c/moving_variance:0 | 
(1024,) | 
+0.0014 | 
+0.0391 | 
+0.0036 | 
| res4u_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1065 | 
+0.1518 | 
+0.0119 | 
| bn4u_branch2a/gamma:0 | 
(256,) | 
+0.2817 | 
+1.1194 | 
+0.1175 | 
| bn4u_branch2a/beta:0 | 
(256,) | 
-1.3112 | 
+0.5442 | 
+0.2535 | 
| bn4u_branch2a/moving_mean:0 | 
(256,) | 
-9.9501 | 
+2.8899 | 
+1.3347 | 
| bn4u_branch2a/moving_variance:0 | 
(256,) | 
+0.4432 | 
+12.1801 | 
+1.2243 | 
| res4u_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1258 | 
+0.1178 | 
+0.0078 | 
| bn4u_branch2b/gamma:0 | 
(256,) | 
+0.6214 | 
+1.3642 | 
+0.1069 | 
| bn4u_branch2b/beta:0 | 
(256,) | 
-0.9785 | 
+0.4391 | 
+0.2048 | 
| bn4u_branch2b/moving_mean:0 | 
(256,) | 
-0.5389 | 
+0.4149 | 
+0.1213 | 
| bn4u_branch2b/moving_variance:0 | 
(256,) | 
+0.0170 | 
+0.1117 | 
+0.0160 | 
| res4u_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1381 | 
+0.1941 | 
+0.0103 | 
| bn4u_branch2c/gamma:0 | 
(1024,) | 
+0.0992 | 
+1.7961 | 
+0.1407 | 
| bn4u_branch2c/beta:0 | 
(1024,) | 
-0.7827 | 
+0.7017 | 
+0.1639 | 
| bn4u_branch2c/moving_mean:0 | 
(1024,) | 
-0.2808 | 
+0.1409 | 
+0.0702 | 
| bn4u_branch2c/moving_variance:0 | 
(1024,) | 
+0.0023 | 
+0.0837 | 
+0.0066 | 
| res4v_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1570 | 
+0.2220 | 
+0.0123 | 
| bn4v_branch2a/gamma:0 | 
(256,) | 
+0.3942 | 
+1.0195 | 
+0.0944 | 
| bn4v_branch2a/beta:0 | 
(256,) | 
-1.2374 | 
+0.4526 | 
+0.2716 | 
| bn4v_branch2a/moving_mean:0 | 
(256,) | 
-6.7398 | 
+2.1281 | 
+1.2705 | 
| bn4v_branch2a/moving_variance:0 | 
(256,) | 
+0.6142 | 
+6.2192 | 
+0.7720 | 
| res4v_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1412 | 
+0.1655 | 
+0.0083 | 
| bn4v_branch2b/gamma:0 | 
(256,) | 
+0.6196 | 
+1.1648 | 
+0.0919 | 
| bn4v_branch2b/beta:0 | 
(256,) | 
-1.0248 | 
+0.8823 | 
+0.1907 | 
| bn4v_branch2b/moving_mean:0 | 
(256,) | 
-0.5943 | 
+0.2525 | 
+0.1225 | 
| bn4v_branch2b/moving_variance:0 | 
(256,) | 
+0.0272 | 
+0.2850 | 
+0.0257 | 
| res4v_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1068 | 
+0.1662 | 
+0.0109 | 
| bn4v_branch2c/gamma:0 | 
(1024,) | 
+0.2345 | 
+1.6791 | 
+0.1361 | 
| bn4v_branch2c/beta:0 | 
(1024,) | 
-0.9361 | 
+0.5179 | 
+0.2008 | 
| bn4v_branch2c/moving_mean:0 | 
(1024,) | 
-0.3138 | 
+0.2207 | 
+0.0648 | 
| bn4v_branch2c/moving_variance:0 | 
(1024,) | 
+0.0023 | 
+0.0550 | 
+0.0047 | 
| res4w_branch2a/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1353 | 
+0.2094 | 
+0.0127 | 
| bn4w_branch2a/gamma:0 | 
(256,) | 
+0.2443 | 
+1.0933 | 
+0.1136 | 
| bn4w_branch2a/beta:0 | 
(256,) | 
-1.4777 | 
+0.3498 | 
+0.2970 | 
| bn4w_branch2a/moving_mean:0 | 
(256,) | 
-15.1299 | 
+2.8008 | 
+2.1165 | 
| bn4w_branch2a/moving_variance:0 | 
(256,) | 
+0.7279 | 
+19.8808 | 
+1.5136 | 
| res4w_branch2b/kernel:0 | 
(3, 3, 256, 256) | 
-0.1029 | 
+0.1717 | 
+0.0083 | 
| bn4w_branch2b/gamma:0 | 
(256,) | 
+0.7102 | 
+1.4165 | 
+0.0997 | 
| bn4w_branch2b/beta:0 | 
(256,) | 
-0.9754 | 
+0.3929 | 
+0.2028 | 
| bn4w_branch2b/moving_mean:0 | 
(256,) | 
-0.3679 | 
+0.2234 | 
+0.0824 | 
| bn4w_branch2b/moving_variance:0 | 
(256,) | 
+0.0133 | 
+0.1334 | 
+0.0153 | 
| res4w_branch2c/kernel:0 | 
(1, 1, 256, 1024) | 
-0.1451 | 
+0.1874 | 
+0.0109 | 
| bn4w_branch2c/gamma:0 | 
(1024,) | 
+0.0215 | 
+1.5528 | 
+0.1530 | 
| bn4w_branch2c/beta:0 | 
(1024,) | 
-0.8591 | 
+0.5082 | 
+0.1832 | 
| bn4w_branch2c/moving_mean:0 | 
(1024,) | 
-0.4728 | 
+0.1823 | 
+0.1269 | 
| bn4w_branch2c/moving_variance:0 | 
(1024,) | 
+0.0008 | 
+0.1209 | 
+0.0090 | 
| res5a_branch2a/kernel:0 | 
(1, 1, 1024, 512) | 
-0.1747 | 
+0.2130 | 
+0.0143 | 
| bn5a_branch2a/gamma:0 | 
(512,) | 
+0.5045 | 
+1.2405 | 
+0.1245 | 
| bn5a_branch2a/beta:0 | 
(512,) | 
-1.4638 | 
+0.5064 | 
+0.3062 | 
| bn5a_branch2a/moving_mean:0 | 
(512,) | 
-11.4545 | 
+4.6925 | 
+1.6878 | 
| bn5a_branch2a/moving_variance:0 | 
(512,) | 
+1.1314 | 
+15.7920 | 
+1.4502 | 
| res5a_branch2b/kernel:0 | 
(3, 3, 512, 512) | 
-0.2464 | 
+0.3249 | 
+0.0091 | 
| bn5a_branch2b/gamma:0 | 
(512,) | 
+0.2982 | 
+1.4230 | 
+0.1373 | 
| bn5a_branch2b/beta:0 | 
(512,) | 
-1.6618 | 
+0.7232 | 
+0.3175 | 
| bn5a_branch2b/moving_mean:0 | 
(512,) | 
-2.2210 | 
+1.7648 | 
+0.3094 | 
| bn5a_branch2b/moving_variance:0 | 
(512,) | 
+0.1187 | 
+1.4766 | 
+0.1865 | 
| res5a_branch2c/kernel:0 | 
(1, 1, 512, 2048) | 
-0.2871 | 
+0.3263 | 
+0.0122 | 
| res5a_branch1/kernel:0 | 
(1, 1, 1024, 2048) | 
-0.3741 | 
+0.4705 | 
+0.0105 | 
| bn5a_branch2c/gamma:0 | 
(2048,) | 
+0.6692 | 
+2.7116 | 
+0.2395 | 
| bn5a_branch2c/beta:0 | 
(2048,) | 
-1.8662 | 
+1.4781 | 
+0.2376 | 
| bn5a_branch2c/moving_mean:0 | 
(2048,) | 
-0.5774 | 
+0.6525 | 
+0.0644 | 
| bn5a_branch2c/moving_variance:0 | 
(2048,) | 
+0.0024 | 
+0.1612 | 
+0.0084 | 
| bn5a_branch1/gamma:0 | 
(2048,) | 
+0.8662 | 
+4.8957 | 
+0.5145 | 
| bn5a_branch1/beta:0 | 
(2048,) | 
-1.8661 | 
+1.4784 | 
+0.2376 | 
| bn5a_branch1/moving_mean:0 | 
(2048,) | 
-10.0727 | 
+4.4287 | 
+1.0954 | 
| bn5a_branch1/moving_variance:0 | 
(2048,) | 
+0.2868 | 
+7.7099 | 
+0.5971 | 
| res5b_branch2a/kernel:0 | 
(1, 1, 2048, 512) | 
-0.1615 | 
+0.2535 | 
+0.0106 | 
| bn5b_branch2a/gamma:0 | 
(512,) | 
+0.3789 | 
+1.1436 | 
+0.0969 | 
| bn5b_branch2a/beta:0 | 
(512,) | 
-1.1929 | 
+0.6042 | 
+0.1990 | 
| bn5b_branch2a/moving_mean:0 | 
(512,) | 
-4.4332 | 
+5.7965 | 
+0.6776 | 
| bn5b_branch2a/moving_variance:0 | 
(512,) | 
+0.8363 | 
+7.6290 | 
+0.8946 | 
| res5b_branch2b/kernel:0 | 
(3, 3, 512, 512) | 
-0.1333 | 
+0.2426 | 
+0.0079 | 
| bn5b_branch2b/gamma:0 | 
(512,) | 
+0.5274 | 
+1.1794 | 
+0.1060 | 
| bn5b_branch2b/beta:0 | 
(512,) | 
-1.8549 | 
+0.5551 | 
+0.2810 | 
| bn5b_branch2b/moving_mean:0 | 
(512,) | 
-1.3069 | 
+1.7223 | 
+0.2265 | 
| bn5b_branch2b/moving_variance:0 | 
(512,) | 
+0.0572 | 
+1.0433 | 
+0.0724 | 
| res5b_branch2c/kernel:0 | 
(1, 1, 512, 2048) | 
-0.1352 | 
+0.1977 | 
+0.0106 | 
| bn5b_branch2c/gamma:0 | 
(2048,) | 
+0.5679 | 
+2.4291 | 
+0.2254 | 
| bn5b_branch2c/beta:0 | 
(2048,) | 
-2.3769 | 
+0.1646 | 
+0.2141 | 
| bn5b_branch2c/moving_mean:0 | 
(2048,) | 
-0.4428 | 
+1.0842 | 
+0.0525 | 
| bn5b_branch2c/moving_variance:0 | 
(2048,) | 
+0.0020 | 
+0.2272 | 
+0.0065 | 
| res5c_branch2a/kernel:0 | 
(1, 1, 2048, 512) | 
-0.1994 | 
+0.3588 | 
+0.0115 | 
| bn5c_branch2a/gamma:0 | 
(512,) | 
+0.1406 | 
+1.1445 | 
+0.0988 | 
| bn5c_branch2a/beta:0 | 
(512,) | 
-1.4070 | 
+0.8456 | 
+0.2542 | 
| bn5c_branch2a/moving_mean:0 | 
(512,) | 
-3.1862 | 
+5.4617 | 
+0.5412 | 
| bn5c_branch2a/moving_variance:0 | 
(512,) | 
+0.5824 | 
+9.3422 | 
+1.1140 | 
| res5c_branch2b/kernel:0 | 
(3, 3, 512, 512) | 
-0.0942 | 
+0.0989 | 
+0.0071 | 
| bn5c_branch2b/gamma:0 | 
(512,) | 
+0.4871 | 
+1.1538 | 
+0.0927 | 
| bn5c_branch2b/beta:0 | 
(512,) | 
-1.4373 | 
+0.3356 | 
+0.2770 | 
| bn5c_branch2b/moving_mean:0 | 
(512,) | 
-0.6456 | 
+0.1676 | 
+0.1068 | 
| bn5c_branch2b/moving_variance:0 | 
(512,) | 
+0.0354 | 
+0.4077 | 
+0.0522 | 
| res5c_branch2c/kernel:0 | 
(1, 1, 512, 2048) | 
-0.1317 | 
+0.1323 | 
+0.0103 | 
| bn5c_branch2c/gamma:0 | 
(2048,) | 
+0.6058 | 
+2.5600 | 
+0.2211 | 
| bn5c_branch2c/beta:0 | 
(2048,) | 
-4.0471 | 
-0.6726 | 
+0.2231 | 
| bn5c_branch2c/moving_mean:0 | 
(2048,) | 
-0.3058 | 
+0.1791 | 
+0.0368 | 
| bn5c_branch2c/moving_variance:0 | 
(2048,) | 
+0.0024 | 
+0.0645 | 
+0.0039 | 
| fpn_c5p5/kernel:0 | 
(1, 1, 2048, 256) | 
-0.0507 | 
+0.0571 | 
+0.0073 | 
| fpn_c5p5/bias:0 | 
(256,) | 
-0.0140 | 
+0.0120 | 
+0.0050 | 
| fpn_c4p4/kernel:0 | 
(1, 1, 1024, 256) | 
-0.1139 | 
+0.0834 | 
+0.0094 | 
| fpn_c4p4/bias:0 | 
(256,) | 
-0.0045 | 
+0.0039 | 
+0.0014 | 
| fpn_c3p3/kernel:0 | 
(1, 1, 512, 256) | 
-0.0509 | 
+0.0533 | 
+0.0073 | 
| fpn_c3p3/bias:0 | 
(256,) | 
-0.0061 | 
+0.0055 | 
+0.0020 | 
| fpn_c2p2/kernel:0 | 
(1, 1, 256, 256) | 
-0.0333 | 
+0.0489 | 
+0.0057 | 
| fpn_c2p2/bias:0 | 
(256,) | 
-0.0051 | 
+0.0063 | 
+0.0020 | 
| fpn_p5/kernel:0 | 
(3, 3, 256, 256) | 
-0.0338 | 
+0.0384 | 
+0.0054 | 
| fpn_p5/bias:0 | 
(256,) | 
-0.0080 | 
+0.0079 | 
+0.0035 | 
| fpn_p2/kernel:0 | 
(3, 3, 256, 256) | 
-0.0278 | 
+0.0344 | 
+0.0051 | 
| fpn_p2/bias:0 | 
(256,) | 
-0.0068 | 
+0.0058 | 
+0.0022 | 
| fpn_p3/kernel:0 | 
(3, 3, 256, 256) | 
-0.0246 | 
+0.0288 | 
+0.0046 | 
| fpn_p3/bias:0 | 
(256,) | 
-0.0039 | 
+0.0038 | 
+0.0015 | 
| fpn_p4/kernel:0 | 
(3, 3, 256, 256) | 
-0.0277 | 
+0.0321 | 
+0.0049 | 
| fpn_p4/bias:0 | 
(256,) | 
-0.0038 | 
+0.0034 | 
+0.0016 | 
| rpn_conv_shared/kernel:0 | 
(3, 3, 256, 512) | 
-0.0162 | 
+0.0160 | 
+0.0011 | 
| rpn_conv_shared/bias:0 | 
(512,) | 
-0.0012 | 
+0.0030 | 
+0.0004 | 
| rpn_class_raw/kernel:0 | 
(1, 1, 512, 6) | 
-0.0700 | 
+0.0700 | 
+0.0094 | 
| rpn_class_raw/bias:0 | 
(6,) | 
-0.0092 | 
+0.0092 | 
+0.0054 | 
| rpn_bbox_pred/kernel:0 | 
(1, 1, 512, 12) | 
-0.0844 | 
+0.1395 | 
+0.0139 | 
| rpn_bbox_pred/bias:0 | 
(12,) | 
-0.0167 | 
+0.0201 | 
+0.0097 | 
| mrcnn_class_conv1/kernel:0 | 
(7, 7, 256, 1024) | 
-0.0240 | 
+0.0250 | 
+0.0032 | 
| mrcnn_class_conv1/bias:0 | 
(1024,) | 
-0.0011 | 
+0.0003 | 
+0.0002 | 
| mrcnn_class_bn1/gamma:0 | 
(1024,) | 
+0.9650 | 
+1.0500 | 
+0.0079 | 
| mrcnn_class_bn1/beta:0 | 
(1024,) | 
-0.0320 | 
+0.0050 | 
+0.0033 | 
| mrcnn_class_bn1/moving_mean:0 | 
(1024,) | 
-20.4790 | 
+8.7007 | 
+2.2488 | 
| mrcnn_class_bn1/moving_variance:0 | 
(1024,) | 
+3.2710 | 
+175.0298 | 
+10.5956 | 
| mrcnn_class_conv2/kernel:0 | 
(1, 1, 1024, 1024) | 
-0.0632 | 
+0.0426 | 
+0.0051 | 
| mrcnn_class_conv2/bias:0 | 
(1024,) | 
-0.0156 | 
+0.0214 | 
+0.0039 | 
| mrcnn_class_bn2/gamma:0 | 
(1024,) | 
+0.9801 | 
+1.0526 | 
+0.0089 | 
| mrcnn_class_bn2/beta:0 | 
(1024,) | 
-0.0126 | 
+0.0288 | 
+0.0043 | 
| mrcnn_class_bn2/moving_mean:0 | 
(1024,) | 
-0.6272 | 
+0.5237 | 
+0.1323 | 
| mrcnn_class_bn2/moving_variance:0 | 
(1024,) | 
+0.0072 | 
+0.6561 | 
+0.0431 | 
| mrcnn_class_logits/kernel:0 | 
(1024, 4) | 
-0.0815 | 
+0.0813 | 
+0.0437 | 
| mrcnn_class_logits/bias:0 | 
(4,) | 
-0.0006 | 
+0.0008 | 
+0.0005 | 
| mrcnn_bbox_fc/kernel:0 | 
(1024, 16) | 
-0.0790 | 
+0.0765 | 
+0.0440 | 
| mrcnn_bbox_fc/bias:0 | 
(16,) | 
-0.0010 | 
+0.0007 | 
+0.0004 | 
| mrcnn_mask_conv1/kernel:0 | 
(3, 3, 256, 256) | 
-0.0520 | 
+0.0462 | 
+0.0045 | 
| mrcnn_mask_conv1/bias:0 | 
(256,) | 
-0.0037 | 
+0.0022 | 
+0.0009 | 
| mrcnn_mask_bn1/gamma:0 | 
(256,) | 
+0.9804 | 
+1.0889 | 
+0.0122 | 
| mrcnn_mask_bn1/beta:0 | 
(256,) | 
-0.0216 | 
+0.0028 | 
+0.0036 | 
| mrcnn_mask_bn1/moving_mean:0 | 
(256,) | 
-4.2402 | 
+1.4667 | 
+0.7274 | 
| mrcnn_mask_bn1/moving_variance:0 | 
(256,) | 
+0.3057 | 
+5.8205 | 
+0.9377 | 
| mrcnn_mask_conv2/kernel:0 | 
(3, 3, 256, 256) | 
-0.0544 | 
+0.0949 | 
+0.0045 | 
| mrcnn_mask_conv2/bias:0 | 
(256,) | 
-0.0049 | 
+0.0035 | 
+0.0016 | 
| mrcnn_mask_bn2/gamma:0 | 
(256,) | 
+0.9846 | 
+1.0401 | 
+0.0092 | 
| mrcnn_mask_bn2/beta:0 | 
(256,) | 
-0.0176 | 
+0.0024 | 
+0.0034 | 
| mrcnn_mask_bn2/moving_mean:0 | 
(256,) | 
-0.7085 | 
+0.2866 | 
+0.1437 | 
| mrcnn_mask_bn2/moving_variance:0 | 
(256,) | 
+0.0300 | 
+0.3525 | 
+0.0369 | 
| mrcnn_mask_conv3/kernel:0 | 
(3, 3, 256, 256) | 
-0.0416 | 
+0.0459 | 
+0.0042 | 
| mrcnn_mask_conv3/bias:0 | 
(256,) | 
-0.0107 | 
+0.0073 | 
+0.0028 | 
| mrcnn_mask_bn3/gamma:0 | 
(256,) | 
+0.9867 | 
+1.0359 | 
+0.0074 | 
| mrcnn_mask_bn3/beta:0 | 
(256,) | 
-0.0312 | 
+0.0009 | 
+0.0044 | 
| mrcnn_mask_bn3/moving_mean:0 | 
(256,) | 
-0.5781 | 
+0.2730 | 
+0.1416 | 
| mrcnn_mask_bn3/moving_variance:0 | 
(256,) | 
+0.0265 | 
+0.1663 | 
+0.0258 | 
| mrcnn_mask_conv4/kernel:0 | 
(3, 3, 256, 256) | 
-0.0326 | 
+0.0267 | 
+0.0037 | 
| mrcnn_mask_conv4/bias:0 | 
(256,) | 
-0.0014 | 
+0.0049 | 
+0.0009 | 
| mrcnn_mask_bn4/gamma:0 | 
(256,) | 
+0.9985 | 
+1.0724 | 
+0.0184 | 
| mrcnn_mask_bn4/beta:0 | 
(256,) | 
+0.0042 | 
+0.0456 | 
+0.0111 | 
| mrcnn_mask_bn4/moving_mean:0 | 
(256,) | 
-0.2408 | 
+0.1736 | 
+0.0773 | 
| mrcnn_mask_bn4/moving_variance:0 | 
(256,) | 
+0.0150 | 
+0.0639 | 
+0.0084 | 
| mrcnn_mask_deconv/kernel:0 | 
(2, 2, 256, 256) | 
-0.0273 | 
+0.0518 | 
+0.0047 | 
| mrcnn_mask_deconv/bias:0 | 
(256,) | 
-0.0029 | 
+0.0718 | 
+0.0104 | 
| mrcnn_mask/kernel:0 | 
(1, 1, 256, 4) | 
-0.1607 | 
+0.1528 | 
+0.0875 | 
| mrcnn_mask/bias:0 | 
(4,) | 
-0.0078 | 
+0.0000 | 
+0.0033 |