import panel as pnpn.extension('altair', 'tabulator')
WARNING:param.panel_extension: altair extension not recognized and will be skipped.
from sklearn.datasets import load_irisfrom sklearn.metrics import accuracy_scorefrom xgboost import XGBClassifierpn.extension(sizing_mode="stretch_width", template="fast")pn.state.template.param.update(site="Data Science", title="XGBoost on Iris Dataset")iris_df = load_iris(as_frame=True)trees = pn.widgets.IntSlider(start=2, end=30, name="Number of trees")def pipeline(trees): model = XGBClassifier(max_depth=2, n_estimators=trees) model.fit(iris_df.data, iris_df.target) accuracy =round(accuracy_score(iris_df.target, model.predict(iris_df.data)) *100, 1)return pn.indicators.Number( name="Test score", value=accuracy,format="{value}%", colors=[(97.5, "red"), (99.0, "orange"), (100, "green")], )pn.Column("Simple example of training an XGBoost classification model on the small Iris dataset.", iris_df.data.head(),"Move the slider below to change the number of training rounds for the XGBoost classifier. The training accuracy score will adjust accordingly.", trees, pn.bind(pipeline, trees),).servable()