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Abstract—As cellular networks like 4G LTE networks get more
and more sophisticated, mobiles also measure and send enormous
amount of mobile measurement data (in TBs/week/metropolitan)
during every call and session. The mobile measurement records
are saved in data center for further analysis and mining, however,
these measurement records are not geo-tagged because the
measurement procedures are implemented in mobile LTE stack.
Geo-tagging (or localizing) the stored measurement record is
a fundamental building block towards network analytics and
troubleshooting since the measurement records contain rich
information on call quality, latency, throughput, signal quality,
error codes etc. In this work, our goal is to localize these
mobile measurement records. Precisely, we answer the following
question: what was the location of the mobile when it sent a given
measurement record? We design and implement novel machine
learning based algorithms to infer whether a mobile was outdoor
and if so, it infers the latitude-longitude associated with the
measurement record. The key technical challenge comes from
the fact that measurement records do not contain sufficient
information required for triangulation or RF fingerprinting based
techniques to work by themselves. Experiments performed with
real data sets from an operational 4G network in a major
metropolitan show that, the median accuracy of our proposed
solution is around 20 m for outdoor mobiles and outdoor
classification accuracy is more than 938%.

I. INTRODUCTION

As cellular technologies evolve from 4G LTE to 5G, these
networks are becoming increasingly difficult to manage and
troubleshoot. This is due to heterogeneity of cells and un-
precedented network complexity and scale. Indeed, in a large
metropolitan city like New York City, the cellular network
of an operator can easily have thousands of cells combining
macro and diverse small cell technologies like metro cells,
distributed antenna systems etc; also, these cells are configured
through tens of thousands of critical network wide parameters.
While management, analytics, and diagnostics of such a com-
plex network are of paramount importance, these also pose
significant challenges. Towards this end, network providers
are moving towards network measurement data driven network
analytics and measurements.

In modern cellular systems, enormous amount of mobile
measurement data is collected during each call/session. The
measurements are typically performed by mobiles and sent
back to the network and eventually saved in the data center
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(see Figure 1 in Section III). Since this data is named differ-
ently by different telecom vendors, in this paper we will refer
to this measurement data as LUMD (LTE UE Measurement
Data). LUMD has rich information on mobile’s performance
metrics like throughput, latency, call drop during previous
session etc. and also on RF metrics like signal strength
(RSRP) and signal to interference plus noise ratio (SINR).
The measurement records are sent on a per-procedure basis
(e.g., service request, session beginning, attach etc.) and also
on a network defined event basis (e.g., relative signal strength
of neighboring cell etc.). See Section III for more details.
Howeyver, since the mobile measurement records are sent from
mobile stack that do not have access to application layer, the
mobile measurement records are not geo-tagged. Absence of
latitude and longitude in LUMD poses challenges in LUMD
based use-cases that rely on the location of the mobiles. These
applications could range from identifying exact locations of
poor coverage to troubleshooting temporary call failures. Thus
geo-tagging the measurement records is a fundamental build-
ing block towards location dependent network analytics and
diagnostics.

The goal of this work is to achieve the following objectives:
(i) infer whether any measurement record was generated
from an indoor mobile or from an outdoor mobile, and (ii)
if the measurement record was generated from an outdoor
mobile, estimate the latitude-longitude of the mobile when the
measurement record was generated. In this work, we develop
machine learning algorithms and present experiment results
from a real data set from an operation 4G LTE deployment.

Key Challenge: In principle, localizing LUMD could be
done using triangulation based localization principles used in
GPS devices or in mobile applications so long as measurement
records contain signal strength related information from three
or more cells. However, in LUMD records, many of the signal
strengths of neighboring cells are missing. LUMD typically
has signal strength (RSRP) from at most two cells: the serving
cell and the strongest neighboring cell. In fact, many LUMD
records are equipped with RSRP from only the serving cell.
Since triangulation based approaches require signal strength
from at least three and ideally four or more cells, the problem
of LUMD localization is essentially a problem of localiza-
tion with missing cell-strength information. Another approach
would be to first create an RF finger-print at different locations



using training data and then use the finger-prints to infer the
location of measurement records. However, this approach too
suffers from a similar problem of having not sufficient cell
signals per location.

A. Approach and Contributions

Our approach: Every location in a wireless coverage area
is characterized by unique RF fingerprint due to the presence
of signals from multiple transmitters. Triangulation and RF
fingerprinting uses different techniques to infer the location
for a given RF signature. In our problem, since measurement
records contain one or two cell signal information, this can be
viewed as projection of RF signature into a lower dimensional
plane and this makes inferring locations challenging. To mit-
igate this problem, we stitch together multiple measurement
records from a mobile to create a time-series of these RF
signatures. Our approach essentially combines localization
principles based on RF fingerprinting and probabilistic path-
tracking used for robot localization. At a high level, our
approach has two steps for localizing measurement records
from outdoor mobiles:

1) Instead of viewing each LUMD record in isolation, for each
mobile, we stitch together LUMD records from that mobile
over a “session duration” and model it as a suitable Marko-
vian time series. The problem now reduces to identifying
locations (states) of the entire path of the mobile.

2) The above solution method assumes that the probabilities
characterizing the underlying Markovian structure can be
learned. We perform supervised learning to estimate these
probabilities. The training data for supervised learning
comes from drive test carried out by network providers.

The details of the above two steps are provided in Section V.
The rationale behind localizing the path taken by a mobile is
two-fold: first, localization accuracy of the individual points
can be improved if there is a nearby point that is more
accurately localized; and second, we also make use of the
road network to constrain points to lie on the road whenever
the mobile is moving.

Our Contributions: We outline our main contributions as
follows:

1) Novel framework: To the best of our knowledge, ours is
the first work to develop a systematic study of geo-tagging
mobile measurement records in modern cellular systems
while tackling the challenges posed by insufficient cell
signal information.

2) Algorithms: We develop novel machine learning algorithms
by combining elements from supervised learning based
RF finger-printing and particle-filter based Hidden Markov
Model learning used for robot path-tracking. We also
present how standard machine learning algorithms can be
adapted for indoor-outdoor classification of mobile mea-
surement records.

3) Evaluation: We present experimental results using real
data-set from an operational 4G LTE network in a major
metropolitan to show the efficacy of our design. Our results

show a median location accuracy of around 20 m whereas

indoor-outdoor classification accuracy is more than 98%.

The rest of the paper is organized as follows. Section II
provides an overview of related work and Section III provides
some background and introduces relevant terminologies. Sec-
tion IV presents the problem setting and states the precise
localization problem. Section V presents the main localization
algorithm and Section VI describes how measurement records
can be classified as indoor or outdoor. We present experi-
mental validation in Section VII and finally we conclude in
Section VIIIL.

II. RELATED WORK

Though our work is on localizing measurement records (i.e.,
estimating mobile location when measurement was generated)
and most of the localization work in the literature is on
localizing devices, the objectives are similar. In the following,
we highlight some of the work on localization in wireless
systems and point out the main difference in our work.

Much of the work on localization in wireless networks is
for indoor localization. Two of the popular techniques are
triangulation and RF fingerprinting. In triangulation based
localization [8], [17], [18], geometric principles are used to
localize a device based on signals from multiple (more than
3 typically) access points. On the other hand, fingerprinting
based localization [2], [6], [9] techniques uses training data
to create RF fingerprint of the area and this fingerprint is
used to localize devices. In [22], the authors propose unsuper-
vised learning method for highly accurate indoor localization
without the need for training data; also see [7], [14]. Among
some of the other works, [13] proposes RFID based indoor
localization, [3] describes Bluetooth based indoor localization,
and [16], [23] provide time difference of arrival (TDOA)
and angle of arrival (AOA) based localization approaches.
However, the common thread in all these works is that,
signals from multiple (more than two mostly) wireless access
points are available and thus creating a unique signature at
different locations. In addition, information related to TDOA
is highly error prone in cellular systems. In our problem, since
measurement records have no more than two signal strength
information, the records can be viewed as carrying a lower
dimensional projection of the unique multi-dimensional RF
signature.

To overcome the above problem, our work creates a time-
series of measurement records from the same mobile which
lifts the RF signals of a mobile into a higher dimension.
Once that is performed, principles from robot localization
can be used. Localizing robot paths is an extensively studied
research area. In such a problem, at different locations, some
noisy version of robot’s state (location, velocity, accelerometer
reading etc.) is observed, and the goal is to estimate the correct
state from sequence of noisy state observations. In [19], the
authors provide an excellent survey of research in this rich
area. A more detailed treatment of different techniques for
robot localization is there in the book [20]. [10] provides
an excellent survey of another closely related problem in



the field: simultaneous localization and mapping. However,
the fundamental difference between localizing robot path and
localizing sequence of measurement records from a mobile is
that, unlike robot measurements, cellular measurement records
do not contain a noisy version of the state (location and
velocity), rather contains RF information which has some
unknown dependence of location.

There has not been many published work on localizing cel-
lular measurement records though localizing 3G measurement
records is studied in [11]. The use of mobile measurement
records have also been looked at [24] to improve paging
efficiency and recently in [12] for fast measurement analytics.

III. BACKGROUND AND TERMINOLOGIES
A. Relevant 4G LTE Terminologies

Though our techniques could apply to any future cellular
system, we use LTE terminologies for convenience. The ter-
minologies [15] relevant for our purpose are described below.

UE (user equipment): UE refers to the mobile end-device.

Cell: In LTE networks, a cell refers to coverage footprint
of a base station transmitter typically ensuring a cell coverage
radius around 0.5 km-5 km. In LTE macro cells, each cell
typically has a directional base-station transmitter with 120°
sectorized antennas.

eNodeB (eNB): The eNB is the network eclement that
interfaces with the UE and hosts critical protocol layers like
PHY, MAC, and Radio Link Control (RLC) etc. Each eNB
typically has 3 base station transmitters with 120° antennas.

Reference Signal Received Power (RSRP): In LTE networks,
UEs make certain measurements of received signal strength for
each nearby cell transmitter. RSRP is the total measured time-
average received power at UE of all downlink reference signals
across the entire bandwidth from a given cell transmitter.
RSRP is a measure of the received signal strength of a cell
transmitter at a UE.

RSSI and RSRQ: RSSI (Received Signal Strength Indicator)
is the total measured received power at the UE over the entire
band of operation from all cell transmitters. RSRQ of a given
cell transmitter at a UE is RSSI scaled by average RSRP (of
that cell) per reference symbol.

B. LTE UE Measurement Data (LUMD)

In 4G LTE networks, during each session and call, mobile
related measurement data is collected by the network [15].
This measurement is referred to by different names by different
network vendors, for e.g., Alcatel-Lucent based systems refer
to this as Per Call Measurement Data (PCMD), Ericsson
systems refer to this as General Performance Event Handling
(GPEH), Nokia systems refer to this as Megamon. In this
paper, we will refer to these measurements as LUMD which
is an abbreviation for LTE UE Measurement Data.

LUMD provided call/session measurement data is essen-
tially a view of the user experience within LTE system.
The measurements are either procedure based or event based.
Procedure based measurements are sent from mobiles when
certain pre-defined procedures take place, for e.g., attach,
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Fig. 1. LUMD Data Collection.

detach, hand-off, session end, session initiation etc. Event

based measurements are sent from UE when certain stan-

dards defined events occur. Few useful events (defined by
standards [1]) for our purpose are as follows:

1) Al and A2: Al (resp. A2) event are triggered at UE when
serving cell RSRP becomes better (resp. worse) than a
network defined threshold (dBm).

2) A3: A3 eventis triggered at UE when a neighbor cell RSRP
becomes better than serving cell RSRP by an offset (in dB)
specified by the network.

3) A4: A4 event is triggered at UE when a neighbor cell RSRP
becomes better than a network defined threshold (dBm).

Measurement data collection architecture: The LUMD data
collection architecture is shown in Figure 1. LUMD is col-
lected at both the eNodeB and MME (Mobility Management
Entity). The MME serves as the coordinator of the LUMD
data. After LUMD collection is turned on at the eNodeB,
it collects the records and sends the data to the MME.
MME aggregates and temporarily saves LUMD from multiple
eNodeBs and sends it periodically (typically in minutes time-
scale) to the data center where LUMD is saved and analyzed.
Scalable storage of LUMD, which can easily run into TB in
a week per metropolitan, in the data center is an important
design problem and beyond the scope of this paper.

Contents of LUMD: LUMD record contains data related
to signaling performance on a per UE per bearer level for
different procedures, user experience such as data throughput
and procedure duration, eNodeB internal UE related data
such as MIMO decision, SINR, buffer size, and normalized
power headroom etc. What information is present depends on
procedure/event that led to the measurement record. For our
purpose, we are interested in RF information contained in mea-
surement records. These are RSRP and RSRQ information. A
LUMD record contains the following RF information:

e RSRP: Most LUMD records contain RSRP of the serving

cell that a UE is associated with. In addition, only when



LUMD is generated due to an A3 or A4 event as described
earlier in this section, it might also contain the RSRP of one
neighboring cell (typically the strongest one).
¢ RSRQ: LUMD also contains RSRQ of the serving cell. Note
that once RSRP and RSRQ are known, the corresponding
RSSI can be uniquely computed since RSRQ is defined as
RSSI scaled by RSRP per reference symbol.
The important thing to note is that RSRP and RSRQ
information is available from no more than two cells in an
LUMD record.

IV. PROBLEM STATEMENT

Consider an LTE network with K cells (we refer to each
cell transmitter as a base station). Mobiles travel along a road
network represented by a graph G,. = (V, E') where V' denotes
graph nodes represented by a latitude-longitude tuple and E
denotes the set of valid directed path between two nodes.

There are two types of data relevant to our discussion:

1) Training data in the form of drive test data: This
is essentially geo-tagged data sent from a set of locations in
the road graph nodes V. Precisely, we are given n locations
{z;}7_, and for each location, RSRP of multiple cells. We
denote by R, j, the signal strength of cell-£ at training location
2;. Note that, for a location z; the data R; ;, is only available
for a small subset of cells near location x;, call this set R;.
We denote the set of training data by Dy, = {x;, R} ;.

2) LUMD data or observed data: This data is not geo-
tagged but comes with time stamp. Precisely, for every mobile,
we are given time instants t;,¢ = 1,2,...,T for each t; we
are also given RSRP Ry (t;) where k € K(t;); K (t;) denotes
the set of cells reported by the mobile at time ¢;. Typically
| K (t;)| takes value one or two. Though we have LUMD for
each mobile-m, we drop the dependence of m on Ry (t) and
K (t) as we are essentially performing the same algorithm for
each mobile separately. The locations of mobiles z; at different
times ¢; are unknown. In the remaining paper for notational
convenience, unless explicitly mentioned, we denote the set of
RSRP in LUMD record {Ry(t;)}her(r,) simply as R (t;).

Thus the problem can be succinctly stated as follows:

Problem of localization with missing RSRPs: We are
given training data consisting of locations {z;}}", and as-
sociated RSRPs {R;}* ; (from each location z;). Estimate
the unknown location of a sequence of measurements Ry, (t;)
where ¢ = 1,2,...,T, k € K(t;). Assume that the loca-
tions are drawn from locations in a road network given by
G,=(V,E).

Remark 1. We make three important remarks:

1) Pre-processing LUMD: In our problem statement, we
have assumed that LUMD from a UE forms a time-series
of measurements. In practice, LUMD records are available
as discrete records containing mobile identifiers (IMSI) and
time-stamps of measurements. Thus, a pre-processing step
is required to stitch together multiple LUMD records from
an UE to create LUMD time-series sequence for each UE
during a session.

2) Randomness of RSRP: The RSRPs denoted by R;js
are random variables. To this end, in the drive test data
there could be more than one RSRP representing the same
location x; but each reporting different samples R, j; from
the underlying random variable. Similarly, the RSRPs in
LUMD is also a realization of the random variable.

3) Accounting for RSRQ: For ease of exposition, we de-
scribe our model and algorithm based on observation of
RSRPs of different cells. In LTE, in addition to RSRP,
mobiles could also report another quantity known as
RSRQ (see Section IIl). This additional information can
be easily incorporated into our model and algorithm by
treating Ry 1,’s and Ry (t:)’s as vector of RSRP and RSRQ
measurements. Note that, our software implementation does
take RSRP and RSRQ both into account and so do the
presented results.

V. LEARNING ALGORITHMS
A. Hidden Markov Model

We now describe our model for learning. First we represent
the motion of the mobile and the observed LUMD data using
suitable Hidden Markov Model (HMM). In HMM, the system
(mobile) moves from one hidden state (location etc.) to another
and in each state certain observations (RSRP etc.) are made.
The goal is to infer the hidden state from the observations
based on prior knowledge about the transition probabilities
between hidden states and observations in the states.

Denote by = the unknown locations of the mobile. Then
the sequence of locations Z;, ¢+ = 1,2, ... of the mobile in the
graph G, form a Markov chain. Given the outputs { Ry, (t;)}7_,
of the HMM we infer the hidden states {7, }_; using different
filtering algorithms.

We now describe our HMM in more detail:

e Hidden States: The hidden states of the HMM are the
location and the velocity of the mobile. At time-t, the HMM
has state described by (Z, 7).

e State transition probabilities and mobility model: These
transition probabilities model how transition happens from
one hidden state to another. For any two points x,y €
V' define the shortest path distance between the points
on graph G, as dg(z,y). The transition probabilities
p(Zi,0; | &i—1,0;—1) of the HMM depend on how the
mobile traverses on the graph G,.. We assume the following
mobility model.

Mobility model: Let the mobile travel with average speed

; in the interval (¢;_1,¢;] along a path in G,.. In our model,

new velocity is weighted combination of previous velocity

and a new random sample. At the end of each interval the
mobile updates its speed for the next interval according to
the following equation.

b= e "1 + (1 — e Py (1)

where 7 = t; — t;_1, vo ~ N(p,0?) is initial velocity
distribution and [ is a scaling constant. Let d; = ©; X 7 and
x; be a point on the graph G, such that dg(z;,z;—1) = d;



along a path (if there is no such point we round d; to the
nearest such point).

Under this mobility model the
p(T4|%i—1,0;-1,G,) is given by

likelihood

1
= ><
Co(1—ePT)rV/2rm

(de (%, &i—1) — T0;_1€P7)?
exp | —
20272(1 — e=B7)2

where C'is a normalizing constant. Note that the mean y and
variance o2 of the initial speed distribution is ideally based
on city road under consideration and the associated speed
limits. The equations in (1) and (2) completely describe the
transition probabilities between the hidden states which can
be expressed as follows.

P(Zi|Ti—1, Vi1, Gr)

2

p(,’f“ @i|i'i—17 Il’}i—lv G'r‘)
= p(Zi|Ti-1,Vi—1, Gy) X p(0;]Z;, Ti—1, Vi-1, Gr)
~ |~ ~ ~ dG(i.'vi.'fl)
=p(Zi|Ti—1,0i—1,Gp)1 |0; = (tl—litzil)
Since the speed ©; is deterministic given Z;,Z;—1. 1[]
denotes the indicator random variable.

e Observations in states: The LUMD records at different
states (locations) represent the observations of HMM model.
The probability distribution (also called the likelihood func-
tion) of an observation (LUMD record) conditioned on a
location is denoted by p(Ry(;)|Z;). In our approach, these
probabilities can be learnt from the drive test data using
regression on drive test data to estimate p(Ry(¢;)|Z;). This
is outlined in Section V-C.

B. Particle Filter Based Localization

The optimal maximum a posteriori (MAP) solution to this
localization problem is given as follows.

{@:}i2, = arg max Pr({zi} i [{Ru(t:) Y, Gr, Dir)

3)

Solving (3) exactly requires a complexity of O(|V|T) which
is computationally infeasible since the size of the graph G, is
very large. Hence we need to design more efficient algorithms.

In particle filter based localization algorithm
LocalizeUFEpf we maintain set of N particles. Each
particle has two properties: estimates of sequence of HMM
states (i.e., location-velocity tuples), and weight that reflects
likelihood of the observations. Initially, each particle is
initialized to a state based on some prior distribution.
Subsequently, for each new LUMD record in the sequence,
each particle samples a new state based on HMM transition
probabilities, and updates its weight based on likelihood of the
LUMD observation given the sampled state. In Algorithm 1,
we show how each particle precisely updates their states and
weights.

In Algorithm 1, ¢; denotes the time at which the UE sends
the LUMD record Rk(ti), ¥; is the speed of the UE at time ¢;,
and dg(z,y) is the shortest distance between points z,y € V
calculated along the edges of the graph G,.. Also assume for
now that the algorithm can compute likelihoods p(Ry(t;)|;)
given a suitable RSRP model M, which is an input to the
algorithm. We will show this computation in Section V-C. Let
Ny, be a non-degeneracy parameter input which determines
when less probable particles are to be discarded.

Algorithm 1 LocalizeU Epf
Input: {Ry(t:)}—1, M,G,, Ni,
Output: Location estimates {Z;}i—;
1: Sample N particles P; = {#{),3%}, j € [N] from prior
distribution p(&1, 1 |Gr) _
2: For each particle j € [N] initialize importance weights wﬁf )
p(Rr(01)]a1)

T
i=1

3: Normalize weights w'?) « @'/ Sy @V, j € [N]

4: for 1 =2 to T do

5: for each particle j € [N] do

6: Sample new state {z\), 5V )} from distribution
p(iti”, ﬁg”ﬁ:g@l, 171@1, G.) and append this state to particle P;

7: Update weight ﬁ)ij ) as product of previous weight wfi >1
and likelihood of current observation Ry (t;)

8: end for . )

9: Normalize weights w;”’ «+ m, j € [N]

10: Ne{f — 725\]:1(11”5[))2

11: if Neyr < N then

12: Sample N particles with replacement from current par-

ticle set {P;},_, with probabilities {ng )}j\lzl. Update particle
set with the new sampled set.

13: Reset weights w) « + for j € [N]
14: end if
15: end for

16: Compute j* = arg max; e[ wg)
17: Output location estimate sequence {5:51 N,

There are a couple of important considerations in the actual
implementation of our algorithm as we note below.

e Choice of prior distribution: The prior distribution
p(Z1,01|G,) is critical to the performance of the algorithm.
There are two options for location prior p(#1|G,). In the
first option, the prior can be uniform over the cell coverage
area but constrained to lie on the road graph. The cell
coverage area can be obtained from the drive test area or
from estimate of cell radius of the cell assuming the cell site
location is known apriori. In the second option, location
likelihood from some other algorithm (typically based on
geometric principles) can be used as prior. Given a location
&1 the velocity prior p(9;|%1, G) can be chosen as follows.
The direction can be chosen uniformly from outgoing edges
of node Z; in road graph G,. Then the speed is assumed
uniformly distributed in range (0, Vynqq], Where vy,q, is the
maximum speed limit at 2, along the chosen road direction.

e Robust PF based algorithm: We make our PF algorithm
robust by doing several runs, deleting the outliers, and
averaging the rest. For detecting the outliers, the output



of the several runs are clustered using an unsupervised

clustering algorithm like affinity propagation, then each

cluster is assigned a probability based on the likelihood
of observations, and the cluster with highest probability is
taken as representative of accurate estimates.

Runtime: The runtime of the LocalizeU Epf is bounded
as O(TN), where T is the length of the LUMD sequence and
N is the number of particles.

Parallelization: Unlike some of the other filtering algo-
rithms, particle filter based algorithm is particularly suited for
parallelization and can be easily scaled to handle large volume
of LUMD data. Note that in Algorithm 1 the inner for loop can
be run in parallel; this can reduce the runtime from O(T'N)
to just O(T) using multiple cores / machines.

C. Regression based Observation Likelihood

Our localization algorithm LocalizeUEpf requires an
RSRP model M which can estimate the probability of observ-
ing an RSRP given a location i.e., the likelihood p(Ry(t;)|Z;).
To achieve this, we resort to Random Forest based regres-
sion [5] on the drive test data D;,.. The rationale behind choos-
ing Random Forest is as follows: first, the drive test data is
spread over a non-contiguous location because coverage areas
in a cell are not necessarily connected. Secondly, wireless
RSRP manifests quite different properties in different locations
and Random Forest is ideal for automatically segmenting an
area into locations where the RSRPs exhibit strong spatial
correlation.

The regressions steps are as follows:

1) For each location and each base station that can be heard
at that location, we take the empirical mean and standard
deviation of all corresponding drive test data RSRP.

2) For each cell, model the spatial variation of RSRP-statistics
(i.e., mean and standard deviation) using Random Forest
where the latitude and the longitude are taken as features
of the model and the RSRP-statistic of the cell is the output.
Each such Random Forest is trained using data aggregated
in previous step. Also, compute the mean square error (or
cross validation error) for each random forest.

3) Denote by RndFrsty,(x, k) (RndFrsts(x, k)) the random
forest predictor of mean (standard deviation) of RSRP for
cell-k at location z. Let (0rr(k))? be the corresponding
mean square error of the predictor. Then for each k €
K (t;) we model

Ri(t:)|%; ~ N(RndFrst(z;, k), 02(%)) , (4
where
o3 (x) = RndFrsty(x, k) + o%p(k) .

Note that the serving cell-k can be obtained from the
LUMD record. In general, we can choose any spatial
regressor instead of random forest. However, choosing
random forest makes the model robust to cell propagation
properties and to the fact that the coverage area of the
cell could be disjoint. When |K (¢;)] > 1 we assume the

RSRP observations to be independent and compute the

overall likelihood as product [ ]; s, (R (t:)|Z:).

This regression procedure can be repeated for other RF
measurements like RSRQ as well.

VI. INDOOR OUTDOOR CLASSIFICATION

So far we have provided a scheme for localizing mea-
surement records under the assumption that the measurement
records are generated from an outdoor mobile. In practice,
mobiles can be outdoor as well as indoor. In the following, we
adapt standard machine learning techniques to infer whether a
measurement record was generated from an indoor mobile or
an outdoor mobile. Our main contribution is in showing that
the combination of RSRP and RSSI provide excellent feature
for indoor-outdoor classification of measurement records. Here
we show how SVM based classifier is easily applicable to our
problem, the results are presented in Section VIIL.

We set-up the indoor-outdoor classification as a supervised
learning problem. The training data for this problem consists
of two sets of data that is usually collected by mobile oper-
ators: (i) walk test of the cellular network that is carried out
at different indoor locations within the network, and (ii) drive
test of the cellular network using a vehicle in different city
streets. In the following, we precisely describe the training
data set that can be easily created out the above walk and
drive test data.

Training data for classification: The training data 7 is a
set of 3-tuple (R;,S;,zi), ¢ = 1,2,...n where R; denotes
a RSRP measurement, S; denotes RSSI measurement, and z;
is a 0 — 1 variable that takes value 1 iff the RSRP-RSSI pair
has come from indoor (walk test) else it takes value O (i.e.,
the record has come from a drive test). Note that, we consider
RSSI values instead of RSRQ measurements because RSRQ is
simply a scaled version of RSSI which is uniquely retrievable
from RSRQ and RSRP.

Indoor-Outdoor classification problem: Given above
training data set 7 and m LUMD records containing RSRP
and RSSI information (R';,S’;),i = 1,2, ...m, infer whether
Z'; is one or zero (indoor or outdoor) for each LUMD record.

This is a classical supervised learning based classification
problem where the drive/walk test data is training data and
LUMD contents are test data set. This problem can be solved
using the following steps:

1) Use a suitable classification algorithm like SVM (Support
Vector Machine) or logistic regression [4] based classifier
to fit a function f; where f : (R;,S;) = z; € {0,1} and
fer 1s trained using the training data set 7.

2) For each LUMD record, predict 2; = fo(R';,S";).

3) (Optional) Using %;, concatenate (R’';, S’;, 2;) with training
data set 7 to form a new training data set 7’. Re-train
classifier f.; using the new training set 7.

4) (Optional) Repeat the last two steps till distance between
(21, 29,...2y) in two successive iteration is smaller than
a pre-defined threshold ¢, say 0.001.

The last two optional steps improve the accuracy of clas-
sification especially when LUMD records can be classified



in a batch. This technique is also known an semi-supervised
learning [4].

Remark 2. Choice of classifier: In practice, the specific clas-
sifier in the first step can be chosen through a cross-validation
procedure, i.e., we try multiple classifiers and pick the one
with best cross-validation score'. In our implementation, we
tried SVM, logistic regression, and random forest classifiers.
Though SVM turned out to be the best for the data set used
in our evaluation, it could be different for another data set.

Putting it all together: The classification along with the
localization scheme can be put together as follows:

1) Use the drive test data to train the condition probabilities
of underlying HMM as per regression based scheme in
Section V-C.

2) Use drive and walk test data to train the SVM based indoor-
outdoor classification engine as described in this section.

3) For each LUMD record, use the classification scheme in
this section to infer which records came from indoor and
which came from outdoor locations.

4) For the outdoor LUMD records, first create LUMD se-
quence for each UE and then use Algorithm 1 to estimate
the latitude-longitude of the mobile when the record was
generated.

VII. EVALUATION

In this section, we present evaluation of our proposed
technique. The objective of our evaluation is three folds: to
understand the accuracy of our localization scheme, to eval-
vate how much the accuracy depends of fraction of network
coverage area that is drive tested, and to evaluate the extent to
which RSRP-RSSI pair serves as good feature set for indoor-
outdoor classification.

A. Methodology

We validate of our solution with measurement data collected
from the LTE deployment of a top-3 service provider in US
in a New York City locality (see map in Figure 2). In this
area, we use the drive test data (from outdoor locations) to
validate our results; we also make use of walk test data from
the same location for evaluating indoor-outdoor classification.
Note that, the drive test data is used for training the Hidden
Markov Model in Algorithm 1. In practice, once the HMM
is trained, LUMD records from UE can be localized using
our techniques, however, we will not be able to validate the
accuracy as we do not have access to ground truths, i.e., actual
mobile location from which the LUMD records were sent.
Thus, to validate our approach, we divided the drive test data
locations into two sets as follows:

o Training locations: A random chosen subset of drive test
data locations were chosen as training locations and all drive
test data from these training locations were chosen to train
our HMM probabilities.

ICross-validation is a model validation technique in machine learning where
part of training data is used for evaluating the machine learning model.

e Test locations: The drive test data locations that were not
part of training locations were chosen as test locations. In
addition, we also allow for some randomly selected training
locations (a small fraction) to be part of both training and
test locations.

Synthesizing test LUMD records: The drive test data at
test locations include much more information than LUMD
record that would be generated at those locations. To exactly
mimic LUMD record that would be generated at the test
locations, we perform the following steps for each test location
to synthesize LUMD record (we only synthesize the contents
relevant for our purpose):

1) Find the serving cell in the drive test data and include the

RSRP and RSRQ of the serving cell in LUMD record.

2) Verify if the strongest RSRP of any non-serving cell
satisfies A3 or A4 event condition (see Section III) and
if so, include the RSRP and RSRQ of that neighbor cell
in the LUMD record. Note that, we strip of any location
information from the LUMD record, however we separately
maintain it simply to compare with estimated location from
the thus created LUMD data.

Once LUMD records are generated at each location, we syn-
thesize LUMD records for a moving user using the following
steps: (i) start at a random location in the street map, select
LUMD record at this location based on LUMDs created at
this location, (ii) a new next location of user is generated by
sampling the nearby test locations probabilistically where the
probabilities are that of user moving to the new location based
on velocity distribution given by (1) and a fixed travel time of
10s, (iii) generate an LUMD record at this new location based
on the LUMD records generated at each location, (iv) repeat
previous three steps till no new location can be found in map
(due to absence of nearby test location) or number of LUMD
records reaches a threshold (chosen as 6 since we have rarely
observed more than 6 —8 LUMD records from one user during
a session in real LUMD data).

Size of data set: Our data set consisted of around 129000
drive test data points at 19000 distinct locations. We present
results with two different splits between training and test
locations: one with percentage of locations unique to training
locations, unique to test locations, common to both respec-
tively 50%,40%, 10%, and another with the corresponding
fractions 70%, 20%, 10%. All our results are averages over
more than 100 user generated LUMD sequences.

B. LUMD Localization Results

In Figure 2, we show the predicted and actual locations of
all mobiles for which we generated LUMD records. As it can
be seen, the actual locations and the estimated locations are
quite close. In the following, we present more detailed analysis
of the results.

Accuracy CDF: In Figure 3(a) and Figure 3(b), we show
the accuracy distribution for two different cases of fraction of
locations used for training. When the training locations are
50% of locations, the median accuracy is around 25m and
when the training locations are 70% of locations, the median
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Fig. 3. CDF of accuracy. when training locations, test locations, common
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accuracy is around 20m. At a higher percentile, the accuracy
is around 50m with 70% training locations and around 75m
for 50% training locations. This implies that, when smaller
fraction of network coverage area is drive tested, the median
accuracy does not get affected much but the probability of
large inaccuracy increases. However, a median accuracy in
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Fig. 4. LUMD length v/s accuracy when training locations, test locations,
common locations are respectively 0.5,0.4,0.1 and 0.7,0.2,0.1.

the range of 20m — 30m is significant improvement over
previous non-machine learning based techniques in literature
that reported median accuracies of more than 100m [11].

Accuracy vs. length of LUMD sequences: Another relevant
question is whether the performance of scheme depends crit-
ically on length of LUMD sequences because our technique
relies on stitching together multiple LUMD records from the
same user. In Figure 4(a) and Figure 4(b), we show the
accuracies in the form a box plots. For different LUMD
sequences, we show boxes that represent IQR or inter quantile
range (25 — 75-th percentile) and the middle line in each box
represents the median. As it can be seen that the median
accuracy of our scheme does not change much with length
of LUMD sequences. For example, the median accuracy with
70% locations with training data, has all median accuracies
within 30m for any LUMD sequence of length less than 6. In
general, we did not see a distinctive pattern in the accuracy
versus length of LUMD sequnce (beyond length 3 sequences).
This can be intuitively explained as follows. On one hand,
longer LUMD series has more dimensions for unambiguous
resolution of mobile path, but localization errors also tend to
propagate in longer sequences. These two effects nullify each
other without causing degradation to accuracy.
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Remark 3. An important question is related to whether a
median accuracy of 20m is good enough. One measure of
this to identify the extent to which the location uncertainty
area is reduced. To illustrate this, since measurement records
contain serving cell information and typical serving cell radius
is around 500m in LTE in urban areas, a rough figure of
initial location uncertainty area is © x 5002. With a median
error of 20m, the location uncertainty area is reduced to a
factor of 20? /5002 ~ 0.16%. For indoor localization, if a Wi-
Fi coverage area is taken as 200m, a similar reduction would
require the localization error to be around 3.2m.

C. Indoor Outdoor Classification Results

In Figure 5, we show the how well we can classify whether a
record comes from an indoor mobile or not. The classification
score we use is the popular F1 score [21] defined by

_ 2PR
~ P+R’

where P is precision defined as the number of true positives
(i.e., indoor) divided by number of predicted positives and R
is recall defined as the number of true positives divided by
the number of actual positives. The reason behind showing
the classification score for different proportion of walk to drive
test data is the following. In practice, collecting drive test data
is much more prevalent and easier and thus we wanted to
understand the performance as we have smaller amount of
walk test data as compared to drive test data. As we can see
in Figure 5, the classification score is in the range 0.95 even
when walk test data set is just 10% of drive test data set and
the outdoor classification increases up to 0.98 when walk test
data set is around 80% of drive test data set. This is a strong
evidence of the fact that RSRP, RSSI tuple can serve as very
good feature set for indoor outdoor classification.

F1 Score

VIII. CONCLUDING REMARKS

In this paper, we have developed localization algorithms
of measurement records in LTE networks and we have also
shown that measurement records can be classified as indoor

or outdoor with appropriate training. We have shown median
accuracy of 20m in urban settings which is a significant
improvement over more than 100m accuracy reported with
non machine learning based techniques. A more challenging
problem is to identify indoor locations at least in terms of
buildings. This could require more training or combining
LUMD with Wi-Fi signatures available from mobiles.
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