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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.



80 2. PROBABILITY DISTRIBUTIONS

functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)
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Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.
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where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ

1/2
i , as illustrated in

Figure 2.7.
For the Gaussian distribution to be well defined, it is necessary for all of the

eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written
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as the product of its eigenvalues, and hence

|Σ|1/2 =
D∏

j=1

λ
1/2
j . (2.55)

Thus in the yj coordinate system, the Gaussian distribution takes the form

p(y) = p(x)|J| =
D∏

j=1

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
(2.56)

which is the product of D independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then∫

p(y) dy =
D∏

j=1

∫ ∞

−∞

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
dyj = 1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters µ and Σ. The expectation of x under the Gaussian
distribution is given by

E[x] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xdx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ) dz (2.58)

where we have changed variables using z = x − µ. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (−∞,∞), the term in z in the factor (z + µ) will vanish by
symmetry. Thus

E[x] = µ (2.59)

and so we refer to µ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case,

we considered the second order moment given by E[x2]. For the multivariate Gaus-
sian, there are D2 second order moments given by E[xixj ], which we can group
together to form the matrix E[xxT]. This matrix can be written as

E[xxT] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xxT dx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ)(z + µ)T dz
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where again we have changed variables using z = x − µ. Note that the cross-terms
involving µzT and µTz will again vanish by symmetry. The term µµT is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zzT. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

z =
D∑

j=1

yjuj (2.60)

where yj = uT
j z, which gives

1
(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
zzT dz

=
1

(2π)D/2

1
|Σ|1/2

D∑
i=1

D∑
j=1

uiuT
j

∫
exp

{
−

D∑
k=1

y2
k

2λk

}
yiyj dy

=
D∑

i=1

uiuT
i λi = Σ (2.61)

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xxT] = µµT + Σ. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

cov[x] = E
[
(x − E[x])(x − E[x])T

]
. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = µ,
together with the result (2.62), to give

cov[x] = Σ. (2.64)

Because the parameter matrix Σ governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix Σ will have D(D + 1)/2
independent parameters, and there are another D independent parameters in µ, giv-Exercise 2.21
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of


