
Zhang’s Camera Calibration Algorithm:

In-Depth Tutorial and Implementation

by

Wilhelm Burger

wilhelm.burger@fh-hagenberg.at

Technical Report HGB16-05

16th May, 2016 (revised April 2020)

Department of Digital Media

University of Applied Sciences Upper Austria, School of Informatics,
Communications and Media, Softwarepark 11, 4232 Hagenberg, Austria

www.fh-hagenberg.at

Copyright © 2016 by the author(s). This report may be freely used, copied, printed and
distributed in its entirety on paper or electronically for academic purposes. Any copies must
include this cover page and notice. Any non-academic use is subject to explicit permission by
the authors.

wilhelm.burger@fh-hagenberg.at
www.fh-hagenberg.at

Abstract

This report details the algorithmic steps involved in the well-known camera
calibration method by Zhang and describes an associated open-source Java im-
plementation that depends only upon the Apache Commons Math library.

Index Terms: Computer vision, camera calibration, Zhang’s method, camera
projection, imaging geometry, image rectification, Java implementation.

Software Repository: https://github.com/imagingbook/imagingbook-calibrate

Citation

Wilhelm Burger: Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and Imple-
mentation, Technical Report HGB16-05, University of Applied Sciences Upper Austria,
School of Informatics, Communications and Media, Dept. of Digital Media, Hagenberg,
Austria, May 2016. https://www.researchgate.net/publication/303233579 Zhang’s Camera
Calibration Algorithm In-Depth Tutorial and Implementation.

@techreport{BurgerCalibration2016,
author = {Burger, Wilhelm},
title = {Zhang’s Camera Calibration Algorithm: In-Depth Tutorial

and Implementation},
language = {english},

institution = {University of Applied Sciences Upper Austria, School of

Informatics, Communications and Media, Dept. of Digital

Media},
address = {Hagenberg, Austria},
number = {HGB16-05},

year = {2016},
month = {05},

url = {https://www.researchgate.net/publication/303233579_Zhang’
s_Camera_Calibration_Algorithm_In-

Depth_Tutorial_and_Implementation}
}

ii

https://github.com/imagingbook/imagingbook-calibrate
https://www.researchgate.net/publication/303233579_Zhang's_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation
https://www.researchgate.net/publication/303233579_Zhang's_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation
https://www.researchgate.net/publication/303233579_Zhang's_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation
https://www.researchgate.net/publication/303233579_Zhang's_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation
https://www.researchgate.net/publication/303233579_Zhang's_Camera_Calibration_Algorithm_In-Depth_Tutorial_and_Implementation

Burger – Zhang’s Camera Calibration Algorithm 1

1 Introduction

Accurate knowledge of the image projection parameters is an essential prereq-
uisite for any kind of quantitative geometric measurement in computer vision.
The real projection parameters depend on numerous technical elements and are
usually not provided by manufacturers of imaging systems. Also, e. g., in the
case of cameras equipped with zoom lenses, the projection parameters may be
variable.

Many approaches to camera calibration exist (see, e. g., [9, p. 226]) using
different strategies with regard to what about the 3D scene is known. Some
approaches make use of a special, calibrated 3D setup (calibration rig), where the
position of all 3D points and the camera center are known. Other approaches,
such as the one by Zhang described here, use multiple views of a 3D pattern
of known structure but unknown position and orientation in space. Finally,
calibration methods exist that make no assumptions about the 3D structure of
the scene, using multiple views of arbitrary, rigid structures. This is commonly
called “self calibration”. In this case the intrinsic camera parameters and the
extrinsic viewing parameters (3D structure) are recovered together. Based on
the imaging model described in Sec. 2, the following parameters are recovered:

� The intrinsic camera parameters, i.e., the inner transformations of the
camera, including focal length, position of the principal point, sensor scale
and skew.

� The parameters of the non-linear lens distortion.

� The external transformation parameters (3D rotation and translation) for
each of the given views of the reference pattern.

2 The perspective projection model

This section describes the underlying projection process from 3D world points
to 2D sensor coordinates and outlines the associated notation.

2.1 The pinhole camera model

The simple and well-known pinhole camera model (see, e. g., [2, Chap. 1]) is
used to describe the projection of 3D world points onto the camera’s sensor
plane. We assume that the image plane is positioned in front of the optical
center, thus the image is not upside-down. The image plane is positioned at the
distance f from the optical center C = (0, 0, 0)

ᵀ
, perpendicular to the optical

axis. The optical center C is the origin of the 3D camera coordinate system.
The optical axis aligns with the Z-axis of the coordinate system and intersects
the image plane at (0, 0, f)

ᵀ
. Throughout this text, we use the definitions listed

in Table 1.
We assume that initially the camera coordinate system is identical to the

world coordinate system (we later remove this constraint and use two separate
coordinate systems). From similar triangles, every 3D point X = (X,Y, Z)

ᵀ

Pantelis Monogioudis
Highlight

Pantelis Monogioudis
Highlight

Pantelis Monogioudis
Highlight

Pantelis Monogioudis
Highlight

Burger – Zhang’s Camera Calibration Algorithm 2

Table 1: List of symbols and notation used in this document.

X = (X,Y, Z)
ᵀ

. a 3D world point

X = (X0, . . . ,XN−1). . . the 3D target points, with Xj = (X,Y, 0)
ᵀ

X = hom(X) homogeneous coordinate for a Cartesian coordinate X

X = hom
−1

(X) Cartesian coordinate for a homogeneous coordinate X

x = (x, y)
ᵀ

. a projected 2D point in the normalized image plane

x̃ = (x̃, ỹ)
ᵀ

. a 2D point after lens distortion (in the normalized image
plane)

u = (u, v)
ᵀ

. a projected 2D sensor point

u̇ = (u̇, v̇)
ᵀ

. an observed 2D sensor point

U̇ i = (u̇i,0, . . . , u̇i,N−1) . the observed sensor points for view i

U̇ = (U̇0, . . . , U̇M−1) . . the observed sensor points for all M views

A . intrinsic camera matrix (Eqn. (15))

a . vector of intrinsic camera parameters, including the dis-
tortion coefficients (Eqn. (120))

f . focal length

R . a 3× 3 rotation matrix

ρ = (ρx, ρy, ρz) a 3D rotation (Rodrigues) vector (Eqn. (126))

t = (tx, ty, tz)
ᵀ

. a 3D translation vector

W = (R | t) an extrinsic camera (view) matrix (Eqn. (16))

w . vector of 3D view parameters (Eqn. (121))

W = (Wi) a sequence of camera views

P̌(W,X) 3D 7→ 2D projection, which maps the 3D point X to
normalized image coordinates with view parameters W
(Eqn. (20))

P(A,W,X) 3D 7→ 2D projection, which maps the 3D point X to the
associated 2D sensor point u with camera intrinsics A
and view parameters W (Eqn. (24))

P(A,k,W,X) 3D 7→ 2D projection, which includes camera lens distor-
tion with parameters k (Eqn. (28)).

yields the relations

X

Z
=
x

f
,

Y

Z
=
y

f
(1)

and thus the projection point in the image plane is

x = f · X
Z
, y = f · Y

Z
(2)

or, in vector notation,

x =

(
x
y

)
=
f

Z
·
(
X
Y

)
. (3)

The world point X lies on a ray which passes through the optical center C =
(0, 0, 0)

ᵀ
and the corresponding image point xi, i.e.,

Xi = λ ·
(
xi − C

)
= λ · xi, (4)

Burger – Zhang’s Camera Calibration Algorithm 3

for some λ > 1.

2.2 The projection matrix

Equations (2) and (3) describe nonlinear transformations in the domain of Carte-
sian coordinates. Using homogeneous coordinates,1 the perspective transforma-
tion can be written as a (linear) matrix equation

(
x
y

)
≡ f

Z
·
(
X
Y

)
≡

fX/ZfY/Z
1

 ≡
fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸

MP

·


X
Y
Z
1

 (5)

or, written more compactly,2

x = hom−1 (MP · hom(X)) . (6)

The projection matrix MP can be decomposed into two matrices Mf and M0

in the form

MP =

f 0 0 0
0 f 0 0
0 0 1 0

 =

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

Mf

·

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

M0

= Mf ·M0, (7)

where Mf models the internals of the (ideal) pinhole camera with focal length f
and M0 describes the transformation between the camera coordinates and the
world coordinates. In particular, M0 is often referred to as the standard (or
canonical) projection matrix [9], which corresponds to the simple viewing ge-
ometry (the optical axis being aligned with the Z-axis), which we have assumed
so far.

2.3 Viewing under rigid motion

If the camera has its own (non-canonical) coordinate system, it observes 3D
points that were subjected to rigid body motion, as described in Sec. A.2. Thus
the projective transformation MP (Eqn. (5)) is now applied to the modified (ro-
tated and translated) points X ′ instead of the original 3D points X = hom(X),
that is,

x = hom−1[MP ·X
′] = hom−1[MP ·Mrb · hom(X)], (8)

where the matrix Mrb specifies some rigid body motion in 3D.3 The com-
plete perspective imaging transformation for the ideal pinhole camera with focal
length f under rigid motion can thus be written as

x = hom−1[Mf ·M0 ·Mrb · hom(X)] (9)

1
See also Sec. A.1 in the Appendix.

2
The operator x = hom(x) converts Cartesian coordinates to homogeneous coordinates.

Inversely, x = hom
−1

(x) denotes the conversion from homogeneous to Cartesian coordinates
(see Sec. A.1 of the Appendix).

3
See also Sec. A.2.3, Eqn. (170) in the Appendix.

Burger – Zhang’s Camera Calibration Algorithm 4

or, by combining M0 and Mrb into a single matrix,

(
x
y

)
= hom−1

[f 0 0
0 f 0
0 0 1

·
1 0 0 0

0 1 0 0
0 0 1 0

·

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

·

X
Y
Z
1


]

= hom−1
[f 0 0

0 f 0
0 0 1


︸ ︷︷ ︸

Mf

·

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

(R t)

·


X
Y
Z
1


]

(10)

= hom−1
[
Mf · (R t) · hom(X)

]
. (11)

In the special case of f = 1, Mf becomes the identity matrix and can thus be
omitted, that is,

x = hom−1 [(R t) · hom(X)] . (12)

In the following, this is referred to as the “normalized projection”.

2.4 Intrinsic camera parameters

A final small step is required to make the perspective imaging transformation
in Eqn. (11) useful as a model for real cameras. In particular, we need to define
how the continuous x/y-coordinates on the image plane map to actual pixel
coordinates by taking into account

� the (possibly different) sensor scales sx, sy in x- and y-direction, respec-
tively,

� the location of the image center uc = (uc, vc) with respect to the image
coordinate system (i. e., the optical axis), and

� the skewedness (diagonal distortion) sθ of the image plane (which is usu-
ally negligible or zero).

The final sensor coordinates u = (u, v)
ᵀ

are obtained from the normalized
image coordinates x = (x, y)

ᵀ
(see Eqn. (12)) as

(
u
v

)
= hom−1

[sx sθ uc
0 sy vc
0 0 1

 ·
f 0 0

0 f 0
0 0 1


︸ ︷︷ ︸

A

·

xy
1

] (13)

= hom−1 [A · hom(x)] , (14)

where

A =

fsx fsθ uc
0 fsy vc
0 0 1

 =

α γ uc
0 β vc
0 0 1

 (15)

is the so-called intrinsic camera matrix. Taking into account these additional
inner camera parameters, the complete perspective imaging transformation can

Burger – Zhang’s Camera Calibration Algorithm 5

now be written as

(
u
v

)
= hom−1

[α γ uc
0 β vc
0 0 1


︸ ︷︷ ︸

A

·

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

W=(R|t)

·


Xi

Yi
Zi
1


]

(16)

= hom−1 [A ·W · hom(X)] , (17)

where A captures the intrinsic properties of the camera (“intrinsics”), and
W = (R | t) are the extrinsic parameters of the projection transformation
(“extrinsics”). Note that we can calculate the projection in Eqn. (17) in two
steps:

Step 1: Calculate the normalized projection x = (x, y)
ᵀ

(see Eqn. (12)):(
x
y

)
= hom−1 [W · hom(X)] (18)

= hom−1
[r11 r12 r13 tx

r21 r22 r23 ty
r31 r32 r33 tz

·

Xi

Yi
Zi
1


]

(19)

= P̌(W,X). (20)

Step 2: Map from normalized coordinates x to sensor coordinates u = (u, v)
ᵀ

by the affine transformation A (see Eqn. (14)):(
u
v

)
= hom−1 [A · hom(x)] = A′ · hom(x) (21)

= hom−1
[α γ uc

0 β vc
0 0 1

 ·
xy

1

] =

(
α γ uc
0 β vc

)
︸ ︷︷ ︸

A
′

·

xy
1

 , (22)

where A′ is the upper 2×3 submatrix of A. Note that, by using A′, no explicit
conversion to Cartesian coordinates (hom−1) is required in Eqn. (22). A and A′

are affine mappings in 2D. Combining the two steps above we can summarize
the whole 3D to 2D projection process, (from world coordinates X to sensor
coordinates u) in a single expression,

u = A′ · hom[x] = A′ · hom
[
hom−1 [W · hom(X)]

]
= P(A,W,X). (23)

We will refer to P(A,W,X), as defined in Eqn. (23), as the projection function,
which maps the 3D point X = (X,Y, Z)

ᵀ
(defined in world coordinates) to the

2D sensor point u = (u, v)
ᵀ
, using the intrinsic parameters A and the extrinsic

(view) parameters W. This function can be separated into two component
functions in the form

P(A,W,X) =

(
Px(A,W,X)
Py(A,W,X)

)
=

(
u
v

)
= u, (24)

We will build on this notation in the following steps.

Burger – Zhang’s Camera Calibration Algorithm 6

The primary goal of camera calibration is to determine the un-
known intrinsic properties of the camera i. e., the elements of
the matrix A (as detailed in Sec. 3).

2.5 Lens distortion

So far we have relied on the naive pinhole camera model which exhibits no
distortions beyond the projective transformation described above. Real cameras
are built with lenses instead of pinholes and these introduce additional geometric
distortions that include two main components [8, p 342]:

� Decentering errors caused by a displacement of the lens center from
the optical axis (this is mostly taken care of by the variable offset (uc, vc)
in Eqn. (13));

� Radial distortion caused by variations in light refractions, which is typ-
ically apparent in wide-angle lenses (“barrel distortion”).

While lens distortion is a complex physical phenomenon in general, it is usually
modeled with sufficient accuracy as a single-variable polynomial function D(r)
of the radial distance r from the lens center [8, p 343] (see Sec. 2.5.2, Eqn. (32)).

2.5.1 Where does the lens distortion come in?

Lens distortion affects the normalized projection coordinates x, i. e., before the
image-to-sensor transformation (defined by the intrinsic camera parameters) is
applied. Before we investigate the actual distortion model, we define a general
distortion function warp: R2 7→ R2, which maps an undistorted 2D coordinate
x to a distorted 2D coordinate x̃ (again in the normalized projection plane) by

x̃ = warp(x,k), (25)

where k is a vector of distortion parameters. With this definition, we can
reformulate the projection process in Eqn. (23) to include the lens distortion as

u = A′ · hom
[
x̃
]

= A′ · hom
[
warp(x,k)

]
(26)

= A′ · hom
[
warp

(
hom−1 [W · hom(X)]︸ ︷︷ ︸

x

,k
)]

(27)

= P(A,k,W,X). (28)

In the following, we describe how the warp() function (referenced in Eqns. (26)–
(27)) is specified and calculated.

2.5.2 Radial distortion model

A radial model is most commonly used for correcting geometric lens distor-
tions. By radial distortion we understand that the displacement is restricted to
radial lines emanating from the image center; the amount of radial displacement
(inwards or outwards) is a function of the radius only. In the normalized pro-
jection plane, the optical axis intersects the image plane at xc = (0, 0), which

Burger – Zhang’s Camera Calibration Algorithm 7

is assumed to be the center of the lens distortion. The radial distance ri of a
projected point x = (x, y)

ᵀ
from the center can thus be simply calculated as

ri = ‖xi − xc‖ = ‖xi‖ =

√
x2i + y2i . (29)

The distortion is assumed to be radially symmetric, i. e., it only depends on the
original radius ri of a given point xi, as defined in Eqn. (29). The distortion
model can thus be specified by a single-variable function D(r,k), such that the
distorted radius is

r̃ = frad(r) = r · [1 +D(r,k)]. (30)

Consequently (see Eqn. (25)), the warped projection point is x̃i = warp(xi,k),
with

warp(xi,k) = xi · [1 +D(‖xi‖,k)]. (31)

The function D(r,k) specifies the (positive or negative) radial deviation for a
given radius r. A simple but effective radial distortion model is based on the
polynomial function

D(r,k) = k0 · r
2 + k1 · r

4 = k ·
(
r2

r4

)
, (32)

with the (unknown) coefficients k = (k0, k1), as illustrated in Fig. 1.4 Note that,
if k0 = k1 = 0, then also D(r,k) = 0 and there is no distortion.

r

D(r,k)

Figure 1: Plot of the radial deviation function D(r,k) in Eqn. (32) for coeffi-
cients k = (k0, k1) = (−0.2286, 0.190335).

2.6 Summary of the projection process

In summary, the following steps model the complete projection process (see
Fig. 3):

4
Other formulations of the radial distortion function can be found in the literature. For

example, D(r) = k0 · r
2

+ k1 · r
4

+ k2 · r
6

is used in [8, p. 343] or D(r) = k0 · r + k1 · r
2

+
k2 · r

3
+ k3 · r

4
by Devernay and Faugeras (mentioned in [9, p. 58]). For a detailed analysis

of radial distortion in fisheye lenses see [3].

Burger – Zhang’s Camera Calibration Algorithm 8

r

r̃ = frad(r)

Figure 2: Plot of the radial distortion r̃ = frad(r) = r · [1 + D(r,k)] in Eqn.
(30) for the same parameters (k) as in Fig. 1.

Burger – Zhang’s Camera Calibration Algorithm 9

(c)(b)(a)

1

Z

X
x

y

x̃

ỹ

u

v

uc

radial
distortion

x̃← warp(x,k)

affine 2D
mapping

u← A · x̃

xx̃u

Figure 3: Summary of the projection chain (from right to left). In (c) the
3D point X (in camera coordinates) is projected (with f = 1) onto the “ideal”
image plane to the normalized coordinates x = (x, y)

ᵀ
. Radial lens distortion

in (b) maps point x to x̃ = (x̃, ỹ)
ᵀ
. The affine mapping specified by the

intrinsic camera transformation (matrix A) finally yields the observed sensor
image coordinates u = (u, v)

ᵀ
in (a).

1. World-to-camera transformation: Given a point (X,Y, Z)
ᵀ
, expressed

in 3D world coordinates, its position in the 3D camera coordinate system
is specified by the viewing transformation W (see Eqn. (168)),

X ′

Y ′

Z ′

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


︸ ︷︷ ︸

W

·


X
Y
Z
1

 , (33)

in homogeneous coordinates, or simply

X ′ = W ·X. (34)

Burger – Zhang’s Camera Calibration Algorithm 9

2. Projection onto the “normalized” (ideal) image plane: The per-
spective projection from the 3D-point X ′ = (X ′, Y ′, Z ′)

ᵀ
(in 3D camera

co-ordinates) onto continuous, normalized 2D coordinates x = (x, y)
ᵀ

on
the image plane is defined (see Eqn. (5)) as

(
x
y

)
=

1

Z ′
·
(
X ′

Y ′

)
= hom−1

[1 0 0 0
0 1 0 0
0 0 1 0

·

X ′

Y ′

Z ′

1

] = P̌(W,X) , (35)

which is equivalent to an ideal pinhole projection with focal length f = 1.

3. Radial lens distortion: The normalized 2D projection coordinates x =
(x, y)

ᵀ
are subjected to a non-linear radial distortion with respect to the

optical center xc = (0, 0)
ᵀ
, expressed by the mapping

x̃ = warp(x,k) or

(
x̃
ỹ

)
=

(
x
y

)
· [1 +D(r,k)], (36)

with r =
√
x2 + x2 and D(r,k) as defined in Eqn. (32). x̃ = (x̃, ỹ)

ᵀ
are

the lens-distorted 2D coordinates—still in the normalized image plane.

4. Affine 2D transformation to sensor coordinates: The normalized
projection points are finally mapped to the scaled and skewed sensor co-
ordinates (see Eqn. (13)) by the affine transformation

u = A′ · hom[x̃] or

(
u
v

)
=

(
α γ uc
0 β vc

)
·

x̃ỹ
1

 , (37)

where α, β, γ, uc, vc are the intrinsic camera parameters (see Eqns. (15)
and (22)).

3 Plane-based self calibration

The popular camera calibration method by Zhang [14, 15] uses a few (at least
two) views of a planar calibration pattern, called “model” or “target”, whose
layout and metric dimensions are precisely known.5 The calibration procedure
works roughly as follows:

1. Images I0, . . . , IM−1 of the model are taken under different views by either
moving the model or the camera (or both).

2. From each image Ii (i = 0, . . . ,M − 1), N sensor points u̇i,0, . . . , u̇i,j ,
. . . , u̇i,N−1 are extracted (observed), assumed to be in 1:1 correspondence
with the points on the model plane.

3. From the observed points, the associated homographies H0, . . . ,HM−1
(linear mappings from the model points and the observed 2D image points)
are estimated for each view i. (see Sec. 3.2).

5
A variant of this calibration technique is also implemented in OpenCV [7].

Burger – Zhang’s Camera Calibration Algorithm 10

4. From the view homographies Hi, the five intrinsic parameters (α, β, γ,
uc, vc) of the camera are estimated using a closed-form (linear) solution,
ignoring any lens distortion at this point. M ≥ 3 views give a unique solu-
tion (up to an undetermined scale factor). If the sensor plane is assumed
to be without skew (i. e., γ = 0, which is a reasonable assumption) then
N = 2 images are sufficient. More views generally lead to more accurate
results (see Sec. 3.3).

5. Once the camera intrinsics are known, the extrinsic 3D parameters Ri, ti
are calculated for each camera view i (see Sec. 3.4).

6. The radial distortion parameters k0, k1 are estimated by linear least-squar-
es minimization (see Sec. 3.5).

7. Finally, using the estimated parameter values as an initial guess, all pa-
rameters are refined by non-linear optimization over all M views (see Sec.
3.6).

These steps are explained in greater detail below (see [14] for a complete de-
scription and the list of symbols in Table 1).

3.1 Calibration model and observed views

The calibration model contains N reference points X0, . . . ,XN−1 whose 3D
coordinates are known. The points are assumed to lie in the XY -plane, i. e.,
their Z-component is zero.

We assume that M different views (i. e., pictures) are taken of the model

plane and we use i = 0, . . . ,M−1 to denote the ith view of the model. From
each camera picture Ii, N feature points are extracted, so we get the observed
sensor points

u̇i,j ∈ R2, (38)

with view numbers i = 0, . . . ,M−1 and point numbers j = 0, . . . , N−1. Note
that every observed point u̇i,j must correspond to the associated model point
Xj . Thus the model points Xj and the image points u̇i,j must be supplied in
the same order. It is essential that this condition is met, since otherwise the
calibration will deliver invalid results.

3.2 Step 1: Estimating the homography for each view

Using Eqn. (17), the mapping (homography) between the observed image coor-
dinates u̇i,j = (u̇i,j , v̇i,j)

ᵀ
and the corresponding 3D point coordinates Xj can

be expressed as

s ·

u̇i,jv̇i,j
1

 = A ·
(

Ri ti
)
·


Xj

Yj
Zj
1

 (39)

or
s · u̇i,j = A ·

(
Ri ti

)
·Xj (40)

(with homogeneous coordinates u̇,X), where

A =

α γ uc
0 β vc
0 0 1

 (41)

Burger – Zhang’s Camera Calibration Algorithm 11

represents the intrinsic camera parameters (common to every view) and and s is
an arbitrary, non-zero scale factor. Ri, ti are the (extrinsic) 3D rotation matrix
and the translation vector for the specific view i.

Since the model points Xj are assumed to lie in the XY -plane of the world

coordinate system (i. e., Zj = 0 for all j),6 we can rewrite Eqn. (39) as

s·

u̇i,jv̇i,j
1

 = A·

 | | | |
ri,0 ri,1 ri,2 ti
| | | |

·

Xj

Yj
0
1

 = A·

 | | |
ri,0 ri,1 ti
| | |

·
Xj

Yj
1

, (42)

where ri,0, ri,1, ri,2 denote the three column vectors of the matrix Ri. Note
that Zj = 0 makes the third vector (ri,2) redundant and it is therefore omitted
in the right part of Eqn. (42). This is equivalent to a 2D homography mapping

s ·

u̇i,jv̇i,j
1

 = Hi ·

Xj

Yj
1

 , (43)

where s is a (undetermined) non-zero scale factor and Hi = λ ·A ·
(

Ri ti
)

is a
3×3 homography matrix (λ being an arbitrary scalar value which can be ignored
since we work with homogeneous coordinates). The matrix Hi is composed of
the 3 column vectors hi,0, hi,1, hi,2, that is,

Hi =

 | | |
hi,0 hi,1 hi,2
| | |

 = λ ·A ·

 | | |
ri,0 ri,1 ti
| | |

. (44)

Thus the task is to determine the homography matrix Hi for a set of corre-
sponding 2D points (u̇i,j , v̇i,j)

ᵀ
and (Xj , Yj)

ᵀ
.

3.2.1 Homography estimation with the Direct Linear Transforma-
tion (DLT)

Among the several methods for estimating homography mappings, the DLT
method is the simplest (see [5, Ch. 4]). It is also used in Zhang’s original
implementation. We assume that the two corresponding 2D points sequences,
the model points X = (X0, . . . ,XN−1), with Xj = (Xj , Yj) and the associated

(observed) sensor points U̇ = (u̇0, . . . , u̇N−1), with u̇j = (u̇j , v̇j)
ᵀ
, are related

by a homography transformation, that is (written in homogeneous coordinates),

u̇j = H ·Xj (45)

or u̇jv̇j
ẇj

 =

H0,0 H0,1 H0,2

H1,0 H1,1 H1,2

H2,0 H2,1 H2,2

 ·
Xj

Y j
Zj

 , (46)

6
This only means that we assume a moving camera instead of a moving object plane

and makes no difference, because only the relative coordinates with respect to the camera is
required for calibration.

Burger – Zhang’s Camera Calibration Algorithm 12

for j = 0, . . . , N−1. Without loss of generality (to show!), we can set Zj = 1
(such that Xj = Xj , Y j = Yj) and can thus rewrite Eqn. (46) asu̇jv̇j

ẇj

 =

H0,0 H0,1 H0,2

H1,0 H1,1 H1,2

H2,0 H2,1 H2,2

 ·
Xj

Yj
1

 . (47)

In Cartesian coordinates, this corresponds to a pair of non-linear equations,

uj =
u̇j
ẇj

=
H0,0 ·Xj +H0,1 · Yj +H0,2

H2,0 ·Xj +H2,1 · Yj +H2,2

, (48)

vj =
v̇j
ẇj

=
H1,0 ·Xj +H1,1 · Yj +H1,2

H2,0 ·Xj +H2,1 · Yj +H2,2

, (49)

which can be rearranged to

u̇j ·(H2,0 ·Xj +H2,1 ·Yj +H2,2) = H0,0 ·Xj +H0,1 ·Yj +H0,2 , (50)

v̇j ·(H2,0 ·Xj +H2,1 ·Yj +H2,2) = H1,0 ·Xj +H1,1 ·Yj +H1,2 , (51)

and finally

u̇j ·Xj ·H2,0 + u̇j ·Yj ·H2,1 + u̇j ·H2,2 −H0,0 ·Xj −H0,1 ·Yj −H0,2 = 0, (52)

v̇j ·Xj ·H2,0 + v̇j ·Yj ·H2,1 + v̇j ·H2,2 −H1,0 ·Xj −H1,1 ·Yj −H1,2 = 0. (53)

This is a pair of homogeneous equations (since the right hand side is zero)
that are linear in the unknown coefficients Hr,c (although, due to the mixed
terms, still non-linear w.r.t. the coordinates u̇j , v̇j , Xj , Yj). By collecting the
nine elements of the unknown homography matrix H into the vector

h = (H0,0, H0,1, H0,2, H1,0, H1,1, H1,2, H2,0, H2,1, H2,2)
ᵀ
, (54)

Eqns. (52) and (53) can be written in the form(
−Xj −Yj −1 0 0 0 u̇jXj u̇jYj u̇j

0 0 0 −Xj −Yj −1 v̇jXj v̇jYj v̇j

)
· h =

(
0
0

)
, (55)

for every corresponding point pair (u̇j , v̇j) ↔ (Xj , Yj). Thus, N point pairs,
assumed to be related by the same homography H, yield a system of 2N homo-
geneous linear equations in the form

−X0 −Y0 −1 0 0 0 u̇0X0 u̇0Y0 u̇0
0 0 0 −X0 −Y0 −1 v̇0X0 v̇0Y0 v̇0
−X1 −Y1 −1 0 0 0 u̇1X1 u̇1Y1 u̇1

0 0 0 −X1 −Y1 −1 v̇1X1 v̇1Y1 v̇1
−X2 −Y2 −1 0 0 0 u̇2X2 u̇2Y2 u̇2

0 0 0 −X2 −Y2 −1 v̇2X2 v̇2Y2 v̇2
...

...
...

...
...

...
...

...
...

−XN−1 −YN−1 −1 0 0 0 u̇N−1XN−1 u̇N−1YN−1 u̇N−1
0 0 0 −XN−1 −YN−1 −1 v̇N−1XN−1 v̇N−1YN−1 v̇N−1


·



H0,0

H0,1

H0,2

H1,0

H1,1

H1,2

H2,0

H2,1

H2,2


=



0
0

0
0

0
0

...

0
0


(56)

or, in the usual matrix-vector notation,

M · h = 0, (57)

where M is a 2N × 9 matrix (with all elements being known constants), d is
the vector of the nine unknowns, and 0 is the zero vector of length 2N .

Burger – Zhang’s Camera Calibration Algorithm 13

Solving homogeneous systems of linear equations: While Eqn. (57)
looks quite similar to an ordinary system of linear equations of the form M ·x =
b, it cannot be solved in the usual way (without additional constraints), since it
always has h = 0 as a trivial (and thus useless) solution. However, Eqn. (57) can
be solved by singular-value decomposition (SVD, [4, Sec. 6.11][1, Sec. 4.5.3][10,
Sec. 2.6]) of the matrix M, which separates M (of size 2N ×9) into the product
of three matrices U,S,V in the form

M = U · S ·Vᵀ
. (58)

Here7 U is a 2N × 2N (in this particular case) unitary8 matrix, S is a 2N × 9
rectangular diagonal matrix with non-negative real values, and V is a 9 × 9
unitary matrix. The concrete decomposition of M is thus

M =


U0,0 ··· U0,2N−1
U1,0 ··· U1,2N−1

...
. . .

...
U2N−1,0 ··· U2N−1,2N−1


︸ ︷︷ ︸

U

·



s0 0 0 0 0 0 0 0 0
0 s1 0 0 0 0 0 0 0
0 0 s2 0 0 0 0 0 0
0 0 0 s3 0 0 0 0 0
0 0 0 0 s4 0 0 0 0
0 0 0 0 0 s5 0 0 0
0 0 0 0 0 0 s6 0 0
0 0 0 0 0 0 0 s7 0
0 0 0 0 0 0 0 0 s8
0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

S

·


V0,0 ··· V8,0

V0,1 ··· V8,1

...
. . .

...
V0,8 ··· V8,8


︸ ︷︷ ︸

V
ᵀ

. (59)

The diagonal elements of S, s0, . . . , s8 are called the singular values of the
decomposed matrix M. Each singular value si has an associated column vector
ui in U (called a left singular vector of M) and a dedicated row vector v

ᵀ
i in

V
ᵀ

(i. e., a column vector vi in V), called a right singular vector. Thus Eqn.
(59) can be equally written as

M =

 | | |
u0 · · · ui · · · u2N−1
| | |

·S·


— v
ᵀ
0 —
...

— v
ᵀ
i —
...

— v
ᵀ
8 —

, (60)

where U consists of the column vectors (u0, . . . ,u2N−1)9 and V is composed of

the row vectors (v
ᵀ
0 , . . . ,v

ᵀ
8).

The seeked-for solution to Eqn. (57), i. e., the unknown parameter vector
h, is finally found as the right singular vector vk associated with the smallest
singular value sk = min(s0, . . . , s8), that is,

h = vk, with k = argmin
0≤i<9

si . (61)

7
There are several different notations in use regarding the size of the matrices involved in

the SVD. We use the version adopted by Matlab and Mathematica (http://mathworld.wolfram.
com/SingularValueDecomposition.html), where S has the same size as the original matrix M
and U,V are square.

8
A square matrix U is called unitary if its column vectors are orthogonal, i. e., if U ·Uᵀ

=

U
ᵀ ·U = I.
9
Note that the vectors ui are zero for i ≥ 9.

http://mathworld.wolfram.com/SingularValueDecomposition.html
http://mathworld.wolfram.com/SingularValueDecomposition.html

Burger – Zhang’s Camera Calibration Algorithm 14

If the resulting homography transformation for the corresponding point sets
is exact, the value of sk is zero. This is generally the case when the homography
is calculated from 4 corresponding point pairs, which is the required minimum
number to solve for the eight degrees of freedom.

If more than 4 point pairs are involved, the system in Eqn. (57) is overdeter-
mined (which is the usual case). Here the value of sk indicates the residual or
“goodness of fit” of the resulting homography. Of course, if the fit is exact for
all point pairs, sk will again be zero. In the case of an overdetermined system,
the obtained solution minimizes Eqn. (57) in the least-squares sense, that is,

‖M · h‖2 → min . (62)

In many common SVD implementations,10 the singular values in S are arranged
in non-increasing order (i. e., si ≥ si+1), such that (in our case) s8 comes out as
the smallest value and v8 (the last column vector of V) is the corresponding so-
lution. For example, the following Java code segment shows an implementation
with the Apache Commons Math (ACM) library:11

RealMatrix M;

SingularValueDecomposition svd = new SingularValueDecomposition(M);

RealMatrix V = svd.getV();

RealVector h = V.getColumnVector(V.getColumnDimension() - 1);

Note that the formulation in Eqn. (62) minimizes an algebraic residual that
does not directly relate to the geometric projection error. This does not cause a
problem in general, since the remaining errors are eliminated in the final, overall
optimization step (see Sec. 3.6). However, minimizing the projection errors of
the homographies at this stage (which is not done in Zhang’s implementation)
may help to improve the convergence of the final optimization. It requires non-
linear optimization, for which the above solution can serve as a good initial
guess (see Sec. 3.2.3).

3.2.2 Normalization of input data

To improve numerical stability of the calculations, it is recommended [6] to
normalize both 2D point sets X and U̇ , before performing the homography
estimation described in the previous section.

Normalization is accomplished by transforming each point set by a dedicated
3 × 3 normalization matrix N (in homogeneous coordinates), such that the
transformed point set becomes centered at the origin and scaled to a standard
diameter, i. e.,

X ′ = normalize(X) = (NX ·X0, . . . ,NX ·XN−1), (63)

U̇
′

= normalize(U̇) = (NU ·u̇0, . . . ,NU ·u̇N−1). (64)

See Sec. B of the Appendix for methods to calculate the normalization ma-
trices NX and NU. Homography estimation is then (analogous to Eqn. (45))
performed on the normalized point sets X ′, U̇ ′, by calculating a matrix H′ sat-
isfying (in the least squares sense)

NU ·u̇j = H′ ·NX ·Xj , (65)

10
E. g., Matlab, Mathematica, Apache Commons Math.

11
http://commons.apache.org/math/ (version 3.6)

http://commons.apache.org/math/

Burger – Zhang’s Camera Calibration Algorithm 15

for j = 0, . . . , N−1. By substituting u̇j (from Eqn. (45)) we get

NU ·H·Xj = H′ ·NX ·Xj (66)

and then, by dropping xj on both sides,

NU ·H = H′ ·NX. (67)

Thus the de-normalized homography can be calculated (by multiplying both
sides with N−1U) as

H = N−1U ·H
′ ·NX. (68)

3.2.3 Non-linear refinement of estimated homographies

As mentioned above, the homography estimates obtained with the DLT method
do not generally minimize the projection errors in the sensor image. In this
step, the estimated homography H for a single view is numerically refined by
minimizing the projection error. Minimizing the projection error requires non-
linear optimization, which is usually implemented with iterative schemes, such
as the Levenberg-Marquart (LM) method, described in Sec. E of the Appendix.

Given is the ordered sequence of model (target) points X = (X0, . . . ,XN−1),

the set of corresponding (observed) sensor points U̇ = (u̇0, . . . , u̇N−1) for a
particular view, and the estimated homography H (calculated as described in
Sec. 3.2.1). Following Eqn. (45), the goal is to minimize the projection error

Eproj =

N−1∑
j=0

∥∥u̇j −H ·Xj

∥∥2 (69)

in the sensor plane, assuming that the positions of the model pointsXj are accu-
rate. The Levenberg-Marquart optimization, performed by procedure Optimize()
in Alg. 4.3, requires two functions for specifying the optimization problem:

The value function: The function Val(X , h) returns the vector (of length
2N) of projected (u, v) coordinates, obtained by applying the homography H
(represented by the vector h = (h0, . . . , h8)) to all model points Xj = (Xj , Yj)

ᵀ

in X , that is,

uj =

(
uj
vj

)
= hom−1(H · hom(Xj)). (70)

The returned vector stacks the u, v values for all N model points in the form

Val(X , h) = Y =



u0
v0
u1
v1
...

uN−1
vN−1


. (71)

Burger – Zhang’s Camera Calibration Algorithm 16

The Jacobian function: The function Jac(X , h) returns a stacked Jacobian
matrix (of size 2N × 9), consisting of the partial derivatives w.r.t the nine
homography parameters. The structure of the returned matrix is

Jac(X , h) = J =



∂u0

∂h0

∂u0

∂h1

∂u0

∂h2

∂u0

∂h3

∂u0

∂h4

∂u0

∂h5

∂u0

∂h6

∂u0

∂h7

∂u0

∂h8
∂v0
∂h0

∂v0
∂h1

∂v0
∂h2

∂v0
∂h3

∂v0
∂h4

∂v0
∂h5

∂v0
∂h6

∂v0
∂h7

∂v0
∂h8

∂u1

∂h0

∂u1

∂h1

∂u1

∂h2

∂u1

∂h3

∂u1

∂h4

∂u1

∂h5

∂u1

∂h6

∂u1

∂h7

∂u1

∂h8
∂v1
∂h0

∂v1
∂h1

∂v1
∂h2

∂v1
∂h3

∂v1
∂h4

∂v1
∂h5

∂v1
∂h6

∂v1
∂h7

∂v1
∂h8

...
...

...
...

...
...

...
...

...

∂uN−1
∂h0

∂uN−1
∂h1

∂uN−1
∂h2

∂uN−1
∂h3

∂uN−1
∂h4

∂uN−1
∂h5

∂uN−1
∂h6

∂uN−1
∂h7

∂uN−1
∂h8

∂vN−1
∂h0

∂vN−1
∂h1

∂vN−1
∂h2

∂vN−1
∂h3

∂vN−1
∂h4

∂vN−1
∂h5

∂vN−1
∂h6

∂vN−1
∂h7

∂vN−1
∂h8


,

(72)

where each pair of rows is associated with a particular model point Xj =
(Xj , Yj) and contains the partial derivatives(

J2j,∗

J2j+1,∗

)
=

(
Xj

w

Yj

w
1
w 0 0 0

−sx·Xj

w
2

−sx·Yj

w
2

−sx
w

2

0 0 0
Xj

w

Yj

w
1
w

−sy·Xj

w
2

−sy·Yj

w
2

−sy
w

2)

)
, (73)

with

sx = h0 ·Xj + h1 · Yj + h2, (74)

sy = h3 ·Xj + h4 · Yj + h5, (75)

w = h6 ·Xj + h7 · Yj + h8. (76)

See Alg. 4.3 for a compact summary of this step.

3.3 Step 2: Determining the intrinsic camera parameters

In the previous step, the homographies H0, . . . ,HM−1 were calculated indepen-
dently for each of the M views. The homographies encode both the common
camera intrinsics as well as the extrinsic transformation parameters that are
generally different for each view. This section describes the extraction of the
intrinsic camera parameters from the given set of homographies.

As defined in Eqn. (42), a homography H = Hi combines the inner camera
transformation A and the view-specific external transformation R, t, such that

H =

 | | |h0 h1 h2

| | |

 = λ ·A ·

 | | |r0 r1 t
| | |

, (77)

where λ is an arbitrary nonzero scale factor. For R to be a valid rotation matrix,
the column vectors r0, r1 must be orthonormal, i. e.,

r
ᵀ
0 · r1 = r

ᵀ
1 · r0 = 0 and (78)

r
ᵀ
0 · r0 = r

ᵀ
1 · r1 = 1. (79)

Burger – Zhang’s Camera Calibration Algorithm 17

We can see from Eqn. (77) that

h0 = λ ·A · r0, (80)

h1 = λ ·A · r1 (81)

and thus

A−1 · h0 = λ · r0, (82)

A−1 · h1 = λ · r1 (83)

and furthermore12

h
ᵀ
0 · (A

−1)
ᵀ

= λ · rᵀ0 , (84)

h
ᵀ
1 · (A

−1)
ᵀ

= λ · rᵀ1 . (85)

Based on Eqns. (78)–(79) this yields two fundamental contraints on the
intrinsic parameters for a given homography H:

h
ᵀ
0 · (A

−1)
ᵀ ·A−1 · h1 = 0, (86)

h
ᵀ
0 · (A

−1)
ᵀ ·A−1 · h0 = h

ᵀ
1 · (A

−1)
ᵀ ·A−1 · h1 (87)

(the factor λ is irrelevant here). For estimating the camera intrinsics, Zhang
substitutes the above expression (A−1)

ᵀ ·A−1 by a new matrix13

B = (A−1)
ᵀ ·A−1 =

B0 B1 B3

B1 B2 B4

B3 B4 B5

, (88)

which is symmetric and composed of only 6 distinct quantities (by inserting
from Eqn. (15)):

B0 =
1

α2 , B1 = − γ

α2β
, (89)

B2 =
γ2

α2β2 +
1

β2 , B3 =
vcγ − ucβ
α2β

, (90)

B4 = −γ(vcγ − ucβ)

α2β2 − vc

β2 , B5 =
(vcγ − ucβ)2

α2β2 +
v2c

β2 + 1. (91)

We can now write the constraints in Eqns. (86)–(87) in the form

h
ᵀ
0 ·B · h1 = 0, (92)

h
ᵀ
0 ·B · h0 − h

ᵀ
1 ·B · h1 = 0, (93)

with hp = (Hp,0, Hp,1, Hp,2)
ᵀ

being the pth column vector (for p ∈ {0, 1, 2}), of
homography H (see Eqn. (77)). Using the 6-dimensional vector

b = (B0, B1, B2, B3, B4, B5)
ᵀ
. (94)

12
Since (A ·B)

ᵀ
= B

ᵀ ·Aᵀ
.

13
We use the same (not necessarily intuitive) sequencing of the matrix elements as in [15]

for compatibility.

Burger – Zhang’s Camera Calibration Algorithm 18

to represent the matrix B (Eqn. (88)), we get the identity

h
ᵀ
p ·B·hq = vp,q(H) · b, (95)

where vp,q(H) is a 6-dimensional row vector obtained from the (estimated)
homography H as

vp,q(H) =


H0,p ·H0,q

H0,p ·H1,q +H1,p ·H0,q

H1,p ·H1,q

H2,p ·H0,q +H0,p ·H2,q

H2,p ·H1,q +H1,p ·H2,q

H2,p ·H2,q



ᵀ

. (96)

For a particular homography H, the two constraints in Eqns. (86)–(87) can now
be reformulated as a pair of linear equations,(

v0,1(H)
v0,0(H)− v1,1(H)

)
· b =

(
0
0

)
, (97)

for the unknown vector b (defined in Eqn. (94)). To consider the estimated
homographies Hi from all M views, the associated 2M equations are simply
stacked in the usual way, i. e.,

v0,1(H0)

v0,0(H0)− v1,1(H0)

v0,1(H1)

v0,0(H1)− v1,1(H1)

...

v0,1(Hi)

v0,0(Hi)− v1,1(Hi)

...

v0,1(HM−1)

v0,0(HM−1)− v1,1(HM−1)



· b =



0

0

0

0

...

0

0

...

0

0



or V · b = 0 , (98)

for short, with the matrix V of size 2M × 6. Again we have an overdeter-
mined system of homogeneous linear equations, which we can readily solved by
singular-value decomposition, as described earlier (see Sec. 3.2.1).

Once the vector b = (B0, B1, B2, B3, B4, B5)
ᵀ

and hence B is known, the
camera intrinsics (i. e., the matrix A) can be calculated. Note that the matrix
A relates to B only by the (unknown) scale factor λ, i. e., B = λ · (A−1)

ᵀ ·A−1.
An elegant (though not trivial) closed-form calculation of A, proposed in [15],
is

α =
√
w/(d ·B0), (99)

β =

√
w/d2 ·B0, (100)

γ =

√
w/(d2 ·B0) ·B1, (101)

uc = (B1B4 −B2B3)/d, (102)

vc = (B1B3 −B0B4)/d, (103)

Burger – Zhang’s Camera Calibration Algorithm 19

with

w = B0B2B5 −B
2
1B5 −B0B

2
4 + 2B1B3B4 −B2B

2
3 , (104)

d = B0B2 −B
2
1 . (105)

An alternative formulation for calculating A – based on numerical decomposi-
tion of B – is given in Sec. C.

3.4 Step 3: Extrinsic view parameters

Once the camera intrinsics are known, the extrinsic parameters R, t for each
view i can be calculated from the corresponding homography H = Hi. From
Eqn. (77) we get

r0 = λ ·A−1 · h0, r1 = λ ·A−1 · h1, t = λ ·A−1 · h2, (106)

with the scale factor

λ =
1

‖A−1 · h0‖
=

1

‖A−1 · h1‖
, (107)

and finally (since R must be orthonormal)

r2 = r0 × r1. (108)

Note that h, r, t, and λ are different for each view i. The resulting 3×3 matrix
R = (r0 | r1 | r2) is most likely not a proper rotation matrix. However, there
are proven techniques for calculating the most similar “true” rotation matrix for
a given 3×3 matrix (again based on singular-value decomposition, as described
e. g. in [10, Sec. 2.6.5] and [14, Appendix C]).14

3.5 Step 4: Estimating radial lens distortion

All calculations so far assumed that the inner camera transformation follows
the simple pinhole projection model. In particular, the distortions introduced
by real lens systems were ignored so far. In this step, a simple non-linear
lens distortion model is added to the projection pipeline and its parameters
are calculated from the observed images. This is accomplished in two steps:
First, the distortion parameters are estimated by linear least-squares fitting,
minimizing the projection error. The lens distortion parameters are then refined
(simultaneously with all other parameters) in a final, overall optimization step,
described in Sec. 3.6.

At this point the (linear) camera intrinsics (A) are approximately known,
and the assumption is that all remaining projection errors can be attributed
to lens distortion. Thus any inaccuracies in the previous steps will also affect
the distortion estimates and the results obtained in this step may be far off the
real values. Alternatively, one could omit this step altogether and rely on the
overall refinement step (in Sec. 3.6) to calculate accurate distortion parameters
(assuming zero distortion at the start).

14
The Rotation class of the Apache Commons Math library provides a construction (among

others) that builds a proper rotation from any 3× 3 matrix that is sufficiently conditioned.

Burger – Zhang’s Camera Calibration Algorithm 20

As mentioned, all remaining errors, i. e., the deviations between the projected
sensor points ui,j and the actually observed sensor points u̇i,j ,

ḋi,j = u̇i,j − ui,j , (109)

are now attributed to lens distortion. Consequently, ḋi,j is referred to as the
observed distortion vector.

As described in Sec. 2.5.2, lens distortion is modeled as a radial displacement,
that is, the original (undistorted) projection ui,j is warped to the distorted point
ũi,j by

ũi,j = uc + (ui,j − uc) · [1 +D(ri,j ,k)] (110)

= uc + ui,j − uc + (ui,j − uc) ·D(ri,j ,k) (111)

= ui,j + (ui,j − uc) ·D(ri,j ,k)︸ ︷︷ ︸
di,j

= ui,j + di,j . (112)

The resulting model distortion vector,

di,j = (ui,j − uc) ·D(ri,j ,k), (113)

is based on the estimated projection center uc (in sensor coordinates) and the
non-linear radial distortion function D(r,k), as defined in Eqn. (32). The pa-
rameters k = (k0, k1) are to be estimated (see Fig. 1). Note that, in Eqn. (113),
the radius ri,j passed to the function D() is not calculated from the projected
sensor points ui,j but as the distance of the associated points xi,j from the
projection center (principal point) xc = (0, 0)

ᵀ
in the “normalized” projection

plane, that is,

ri,j = ‖xi,j − xc‖ = ‖xi,j‖. (114)

For a positive function value D(ri,j ,k) the sensor point ui,j is shifted outwards
(i. e., away from the projection center) to the distorted position ũi,j , and inwards
if the function value is negative.

The unknown distortion parameters k can be estimated by minimizing the
difference between the model distortions di,j (Eqn. (113)) and the associated
observed distortions ḋi,j (Eqn. (109)), that is,∑

i,j

‖di,j − ḋi,j‖ → min . (115)

In other words, we are looking for a least squares solution to the over-determined
system of equations di,j = ḋi,j (for all point index pairs i, j), that is,

(ui,j − uc) ·D(ri,j ,k) = u̇i,j − ui,j , (116)

to find the distortion parameters k. By inserting from Eqns. (109)–(113) and
expanding the function D() from Eqn. (32), every observed point i, j contributes
a pair of equations

(u̇i,j − uc) · r
2
i,j · k0 + (u̇i,j − uc) · r

4
i,j · k1 = (u̇i,j − ui,j),

(v̇i,j − vc) · r
2
i,j · k0 + (v̇i,j − vc) · r

4
i,j · k1 = (v̇i,j − vi,j),

(117)

Burger – Zhang’s Camera Calibration Algorithm 21

to the system. Note that (fortunately) these equations are linear in the un-
knowns k0, k1, i. e., they can be solved with standard linear algebra methods.15

For this purpose, we rewrite Eqn. (117) in the familiar matrix notation as(
(u̇i,j − uc) · r

2
i,j (u̇i,j − uc) · r

4
i,j

(v̇i,j − vc) · r
2
i,j (v̇i,j − vc) · r

4
i,j

)
·
(
k0
k1

)
=

(
u̇i,j − ui,j
v̇i,j − vi,j

)
. (118)

By stacking the equations for all MN points on top of each other, we end up
with a system of 2MN linear equations,

(u̇0,0−uc) · r
2
0,0 (u̇0,0−uc) · r

4
0,0

(v̇0,0−vc) · r
2
0,0 (v̇0,0−vc) · r

4
0,0

(u̇0,1−uc) · r
2
0,1 (u̇0,1−uc) · r

4
0,1

(v̇0,1−vc) · r
2
0,1 (v̇0,1−vc) · r

4
0,1

.

.

.
.
.
.

(u̇i,j−uc) · r
2
i,j (u̇i,j−uc) · r

4
i,j

(v̇i,j−vc) · r
2
i,j (v̇i,j−vc) · r

4
i,j

.

.

.
.
.
.

(u̇M−1,N−1−uc) · r
2
M−1,N−1 (u̇M−1,N−1−uc) · r

4
M−1,N−1

(v̇M−1,N−1−vc) · r
2
M−1,N−1 (v̇M−1,N−1−vc) · r

4
M−1,N−1


︸ ︷︷ ︸

D

·
(
k0
k1

)
=



u̇0,0−u0,0

v̇0,0−v0,0
u̇0,1−u0,1

v̇0,1−v0,1
.
.
.

u̇i,j−ui,j

v̇i,j−vi,j
.
.
.

u̇M−1,N−1−uM−1,N−1
v̇M−1,N−1−vM−1,N−1


︸ ︷︷ ︸

ḋ

,

(119)

or D ·k = ḋ for short, with k = (k0, k1)
ᵀ

as the vector of unknowns. The least-
squares solution that minimizes ‖D · k− ḋ‖2 is found with the usual numerical
methods (e. g., singular-value or QR-decomposition).16

3.6 Step 5: Refining all parameters

The last step of the calibration procedure is to optimize all calibration param-
eters, i. e., the camera intrinsics and the extrinsic parameters for all M views
(with N observed points each), in a single (non-linear) system of equations. We
define the vectors

a = (α, β, γ, uc, vc︸ ︷︷ ︸
from A

, k0, k1︸ ︷︷ ︸
k

)
ᵀ
, (120)

to collect the intrinsic camera parameters (a, with 5 elements taken from the
estimated matrix A and 2 elements from k) and the extrinsic parameters

wi = (ρi,x, ρi,y, ρi,z︸ ︷︷ ︸
from Ri

, ti,x, ti,y, ti,z︸ ︷︷ ︸
from ti

)
ᵀ
, (121)

for i = 0, . . . ,M − 1, (wi, with 3 elements taken from Ri and 3 elements from
ti) for each view i (see below for the meaning of the rotation parameters ρi).

15
Of course, the same approach can be used for higher-order distortion models with addi-

tional coefficients.
16

The Java implementation described in Sec. 6 uses an instance of the Apache Commons
Math QRDecomposition class and its associated solver.

Burger – Zhang’s Camera Calibration Algorithm 22

3.6.1 Total projection error

Given the observed image points u̇i,j = (u̇i,j , v̇i,j)
ᵀ
, the goal is to minimize the

total projection error

E(a,w) =

M−1∑
i=0

N−1∑
j=0

‖u̇i,j − ui,j‖ (122)

=

M−1∑
i=0

N−1∑
j=0

‖u̇i,j − P(a,wi,Xj)‖
2 (123)

=

M−1∑
i=0

N−1∑
j=0

|u̇i,j − ui,j |
2 + |v̇i,j − vi,j |

2 (124)

=

M−1∑
i=0

N−1∑
j=0

|u̇i,j − Px(a,wi,Xj)|
2 + |v̇i,j − Py(a,wi,Xj)|

2, (125)

for the camera parameters a and all view parameters w = w0, . . . ,wM−1.17

This is a non-linear least-squares minimization problem which cannot be solved
in closed form or by linear least-squares fitting. Iterative techniques are used in
this case, as described in Sec. 3.6.3.

3.6.2 Parameterizing the extrinsic rotation matrices Ri

Every 3D rotation matrix R consists of nine elements, despite the fact that
it has only three degrees of freedom. Thus rotation matrices are subjected to
strong constraints (see Sec. A.2.1 in the Appendix).

There are several ways to express arbitrary 3D rotations with only 3 param-
eters. As suggested in [15], we use the Euler-Rodrigues method [13, Ch. 6] [5,
p. 585] that is based on a 3D vector

ρ = (ρx, ρy, ρz) (126)

that specifies both the 3D axis of rotation and the rotation angle θ as its mag-
nitude, that is,

θ = ‖ρ‖ and ρ =
ρ

‖ρ‖
· θ = ρ̂ · θ, (127)

where ρ̂ is the normalized (unit) vector for ρ. A rotation matrix R can be
easily converted to a Rodrigues vector ρ and vice versa; details are found in the
literature.18 In the algorithms described below, we use the notation

R← ToRotationMatrix(ρ),

ρ← ToRodriguesVector(R).

for converting between Rodrigues vectors and rotations matrices (see Sec. A.2.4
in the Appendix).

17
With 5 intrinsic camera parameters, 2 lens distortion coefficients, and 6 parameters for

each of the M views, this means optimizing 7 +M · 6 parameters.
18

The Rotation class of Apache Commons Math provides convenient constructors to create
a unique rotation from either a 3× 3 rotation matrix or a direction vector and rotation angle.

Burger – Zhang’s Camera Calibration Algorithm 23

3.6.3 Non-linear optimization

As outlined in Sec. 3.6.1, the goal of the overall refinement step is to determine
the camera parameters a and the view parameters w0, . . . ,wM−1 that minimize
the total projection error E (see Eqns. (122)–(125)). Non-linear optimization
problems of this kind can only be solved with iterative techniques, such as
the Levenberg-Marquart (LM) method [10, Sec. 15.5.2], which combines the
Gauss-Newton method and the steepest gradient descent method. For a short
introduction to the general approach see Sec. E in the Appendix.

To apply the LM-technique to the calibration refinement problem, we first
concatenate the estimated intrinsic parameters a and all extrinsic parameters
wi (defined in defined in Eqns. (120–121) into a composite parameter vector

P = (a
ᵀ | wᵀ

0 | . . . | w
ᵀ
M−1)

ᵀ
(128)

= (α, β, γ, uc, vc, k0, k1︸ ︷︷ ︸
a

ᵀ

, ρ0,x, ρ0,y, ρ0,z, t0,x, t0,y, t0,z︸ ︷︷ ︸
w

ᵀ
0

, . . . , ρM−1,x, . . . , tM−1,z︸ ︷︷ ︸
w

ᵀ
M−1

)
ᵀ
,

(129)

with 7 + 6M elements total (see Alg. 4.8).
The sample positions (denoted xi in Sec. E.1, Eqn. (193)) are the 3D coordi-

nates X0, . . . ,XN−1 of the points on the calibration target, doubled (one each
for the x and y part of the projection) and repeated for each of the M views,
that is,

X = (X0,X0, . . . ,XN−1,XN−1︸ ︷︷ ︸
view 0

, . . . ,X0,X0, . . . ,XN−1,XN−1︸ ︷︷ ︸
view M−1

)
ᵀ
, (130)

The sample values (denoted yi in Sec. E.1, Eqn. (194)) are the x/y-components
of the observed image positions u̇i,j = (u̇i,j , v̇i,j), that is,

Ẏ = (u̇0,0, v̇0,0, u̇0,1, . . . , u̇0,N−1, v̇0,N−1︸ ︷︷ ︸
view 0

, . . . , u̇M−1,0, v̇M−1,0, . . . , v̇M−1,N−1︸ ︷︷ ︸
view M−1

)
ᵀ
.

(131)

Both X and Ẏ are of length 2MN . Analogous to Eqn. (196), the model evaluation
thus has the structure

Val(X , P) = Y =



u0,0
v0,0
u0,1
v0,1

...

ui,j
vi,j

...

uM−1,N−1
vM−1,N−1



=



Px(a,w0,X0)
Py(a,w0,X0)

Px(a,w0,X1)
Py(a,w0,X1)

...

Px(a,wi,Xj)
Py(a,wi,Xj)

...

Px(a,wM−1,XN−1)
Py(a,wM−1,XN−1)



, (132)

again with 2MN rows (see Eqn. (129) for the parameter vector P and Eqn. (24)
for the definition of the projection functions Px() and Py()). The corresponding

Burger – Zhang’s Camera Calibration Algorithm 24

Jacobian function (see Eqn. (198)) has the form

Jac(X , P) = J =



∂Px(a,w0,X0)
∂p0

∂Px(a,w0,X0)
∂p1

· · · ∂Px(a,w0,X0)
∂pK−1

∂Py(a,w0,X0)

∂p0

∂Py(a,w0,X0)

∂p1
· · · ∂Py(a,w0,X0)

∂pK−1

∂Px(a,w0,X1)
∂p0

∂Px(a,w0,X1)
∂p1

· · · ∂Px(a,w0,X1)
∂pK−1

∂Py(a,w0,X1)

∂p0

∂Py(a,w0,X1)

∂p1
· · · ∂Py(a,w0,X1)

∂pK−1

...
...

...

∂Px(a,wi,Xj)

∂p0

∂Px(a,wi,Xj)

∂p1
· · · ∂Px(a,wi,Xj)

∂pK−1
∂Py(a,wi,Xj)

∂p0

∂Py(a,wi,Xj)

∂p1
· · · ∂Py(a,wi,Xj)

∂pK−1

...
...

...

∂Px(a,wM−1,XN−1)

∂pM−1,0

∂Px(a,wM−1,XN−1)

∂pM−1,1
· · · ∂Px(a,wM−1,XN−1)

∂pM−1,K−1
∂Py(a,wM−1,XN−1)

∂pM−1,0

∂Py(a,wM−1,XN−1)

∂pM−1,1
· · · ∂Py(a,wM−1,XN−1)

∂pM−1,K−1



.

(133)

The “stacked Jacobian” J in Eqn. (133) has two rows for each projected point
i, j and one column for each of parameter pk, i. e., 2MN rows and K = 7 + 6M
columns. For example, with M = 5 views and N = 256 points each, J is of size
2560× 37.

However, J is sparse, since the full parameter vector P is composed of the
camera intrinsics a and the extrinsic parameters wi for the M views (see Eqns.
(128)–(129)). The camera parameters a affect all observations, thus the first 7
columns of J generally contain non-zero values. The first 2N rows of J corre-
spond to view i = 0 and, in general, view i relates to rows i·2N, . . . , (i+1)·2N−1
of the matrix, for i = 0, . . . ,M−1. However, the extrinsic parameters wi of
any view i are relevant for the observations made with that view only, thus the
matrix has the block structure shown in Fig. 4.

Each block of columns in J corresponds to a particular segment of the pa-
rameter vector p. For example, the leftmost (green) column represents the first
7 columns of J for the intrinsic (view-independent) camera parameters a. All
rows in the a-segment of the Jacobian must be calculated, since the projections
of all views change when any intrinsic camera parameter is modified. Since each
view covers 2N rows of J, the size of each green block is 2N × 7.

However, in the matrix columns associated with the extrinsic parameterswi,
none of the views – except view i itself – is affected by the values of wi. Thus
in the columns for wi only the matrix rows for view i must be calculated, all
other derivatives are unaffected and thus zero. Since wi extends over 6 matrix
columns, the size of each diagonal (red) block is 2N × 6. This leaves many zero
elements (gray blocks) and thus only a small part of the Jacobian matrix must
actually be calculated. This is quite important, because the Jacobian must be
recalculated in every iteration of the LM optimization process.

Burger – Zhang’s Camera Calibration Algorithm 25

segments of parameter vector P

View
a︷ ︸︸ ︷ w0︷ ︸︸ ︷ w1︷ ︸︸ ︷ w2︷ ︸︸ ︷ · · ·

wM−1︷ ︸︸ ︷
0
{

∂P(a,w0,X)

∂a

∂P(a,w0,X)

∂w0
∅ ∅ · · · ∅

1
{

∂P(a,w1,X)

∂a
∅ ∂P(a,w1,X)

∂w1
∅ · · · ∅

2
{

∂P(a,w2,X)

∂a
∅ ∅ ∂P(a,w2,X)

∂w2
· · · ∅

...
...

...
...

...
. . .

...

M−1
{

∂P(a,wM−1,X)

∂a
∅ ∅ ∅ · · · ∂P(a,wM−1,X)

∂wM−1

Figure 4: Structure of the “stacked” Jacobian J in Eqn. (133). The green
blocks only depend on the intrinsic camera parameters a. Each of the pink
blocks depends only on the associated view parameters wi, and the values in
the gray blocks are zero.

3.6.4 Calculating the Jacobian

The Jacobian matrix in Eqn. (133) consists of the partial derivatives of the
projection function with respect to the individual parameters, evaluated for the
given position X. In the ideal case, the partial derivative functions are known
in analytic form and can be directly evaluated.

Analytic calculation. The partial derivative functions of the projection map-
ping (including the non-linear radial lens distortion) can be obtained in analytic
form, e. g., with Matlab, although the resulting expressions are quite involved.
The Matlab-generated C code used in most implementations is not human-
readable (many anonymous variables) and covers several pages. Although this
is the most efficient way to calculate the Jacobian (running about twice as fast
as the numeric method described below), any change in the projection model
also affects the formulation of the derivatives. Thus the projection model is not
implemented in a single place (i. e., by a single function or method) but needs
to be replicated for the derivative calculation, which is also a potential source
for errors.

Numeric calculation. It is also possible to estimate the partial derivatives
numerically by finite difference approximation, as described in Sec. E.1.4 in the
Appendix. Of course, only the elements of the Jacobian within the non-zero
blocks (see Fig. 4) need to be calculated.

The numerical calculation of the Jacobian takes about 50% longer to execute
than the analytical approach described above, even by exploiting the diagonal
block structure of the matrix. However, it does not require any specific code for
the projection model but simply invokes the same projection method that is used
for calculating the “value” function F (). This is certainly of advantage, since
the calculation of the Jacobian needs not be updated in the case the projection
model changes.

Burger – Zhang’s Camera Calibration Algorithm 26

In the associated Java implementation, the LevenbergMarquardtOptimizer
class (provided by the Apache Commons Math library) is used to perform the
numerical optimization. Details can be found in the source code (see class
NonlinearOptimizer in package imagingbook.extras.calibration.zhang).

4 Summary

The complete calibration process is summarized in Algorithms 4.1–4.8.

Algorithm 4.1 Camera calibration algorithm by Zhang (overview). It is as-
sumed that each observed image point u̇i,j corresponds to the associated model
point Xj and all views were taken with the same camera. Details are found in
Algs. 4.2–4.8.

1: Calibrate(X , U̇)
Input: X = (X0, . . . ,XN−1), an ordered sequence of 3D points on the planar

target, with Xj = (Xj , Yj , 0)
ᵀ
; U̇ = (U̇0, . . . , U̇M−1), a sequence of views,

each view U̇ i = (u̇i,0, . . . , u̇i,N−1) is an ordered sequence of observed image

points u̇i,j = (u̇i,j , v̇i,j)
ᵀ
. Returns the estimated intrinsic parameters A,k

of the camera and the extrinsic transformationsW = (W0, . . . ,WN−1), with
Wi = (Ri | ti), for each view.

2: Hinit ← GetHomographies(X , U̇) . Step 1 (Sec. 3.2)
3: Ainit ← GetCameraIntrinsics(Hinit) . Step 2 (Sec. 3.3)
4: Winit ← GetExtrinsics(A,Hinit) . Step 3 (Sec. 3.4)
5: kinit ← EstLensDistortion(Ainit,Winit,X , U̇) . Step 4 (Sec. 3.5)
6: 〈A,k,W〉 ← RefineAll(Ainit,kinit,Winit,X , U̇) . Step 5 (Sec. 3.6)
7: return 〈A,k,W〉

Burger – Zhang’s Camera Calibration Algorithm 27

Algorithm 4.2 Estimation of view homographies.

1: GetHomographies(X , U̇)
Input: X = (X0, . . . ,XN−1), the model points; U̇ = (U̇0, . . . , U̇M−1),
the associated sensor points in M views. Returns a sequence of estimated
homographies H = (H0, . . . ,HM−1), one for each of the M views.

2: M ← |U̇| . number of views
3: H ← ()
4: for i← 0, . . . ,M−1 do . for each view i
5: Hinit ← EstimateHomography(X , U̇ i) . see below
6: H← RefineHomography(Hinit,X , U̇ i) . see Alg. 4.3
7: H ← H` (H)

8: return H . H = (H0, . . . ,HM−1)

9: EstimateHomography(P ,Q) . replace A, B
Input: P = (p0, . . . ,pN−1), Q = (q0, . . . , qN−1), with pj , qj ∈ R2.
Returns the estimated homography matrix H, such that qj = H · pj .

10: N ← |P | . number of points in P ,Q
11: NP ← GetNormalisationMatrix(P)
12: NQ ← GetNormalisationMatrix(Q)
13: M← new matrix of size 2N × 9
14: for j ← 0, . . . , N−1 do
15: k ← 2 · j

Normalize:
16: p′ ← hom−1(NP · hom(pj)) . p′ = (x′p, y

′
p)

ᵀ

17: q′ ← hom−1(NQ · hom(qj)) . q′ = (x′q, y
′
q)

ᵀ

18: Mk,∗ ← (x′p, y
′
p, 1, 0, 0, 0,−x

′
px
′
q,−y

′
px
′
q − x

′
q) . row vec. k

19: Mk+1,∗ ← (0, 0, 0, x′p, y
′
p, 1,−x

′
py
′
q,−y

′
py
′
q,−y

′
q) . row vec. k+1

Solve the homogeneous system (e. g. by singular value decomposition):
20: h← Solve(M · h = 0) . h = (h0, . . . , h8)

21: H′ ←

h0 h1 h2h3 h4 h5
h6 h7 h8


22: H← N−1Q ·H

′ ·NP . de-normalize H′, see Eqn. (68)
23: return H

24: GetNormalisationMatrix(X)
Input: X = (x0, . . . ,xN−1), with xj = (xj , yj)

ᵀ
.

25: N ← |X|
26: x̄← 1

N

∑N−1
j=0 xj , σ2

x ← 1
N

∑N−1
j=0 (xj−x̄)2

27: ȳ ← 1
N

∑N−1
j=0 yj , σ2

y ← 1
N

∑N−1
j=0 (yj−ȳ)2

28: sx ←
√

2/σ2
x

29: sy ←
√

2/σ2
y

30: NX ←

sx 0 −sxx̄
0 sy −sy ȳ
0 0 1

 . see Eqn. (181)

31: return NX

Burger – Zhang’s Camera Calibration Algorithm 28

Algorithm 4.3 Refinement of a single view homography by minimizing the
projection error in the sensor image using non-linear (Levenberg-Marquart) op-
timization.

1: RefineHomography(H,X , U̇)
Input: H = (Hm,n), the initial 3 × 3 homography matrix; X = (X0, . . . ,

XN−1), with Xj = (Xj , Yj)
ᵀ
, the model points; U̇ = (u̇0, . . . , u̇N−1), with

u̇j = (u̇j , v̇j)
ᵀ
, the observed sensor points for a single camera view. Returns

the numerically optimized homography H′.
2: N ← |X |
3: X← (X0,X0,X1,X1, . . . ,XN−1,XN−1) . |X| = 2N
4: Ẏ← (u̇0, v̇0, u̇1, v̇1, . . . , u̇N−1, v̇N−1) . |Y| = 2N
5: h← (H0,0, H0,1, H0,2, H1,0, H1,2, H1,2, H2,0, H2,1, H2,2) . flatten H

6: h
′ ← Optimize(Val,Jac, X, Ẏ, h) . LM-optimization

7: H′ ← 1

h
′
8

·

h
′
0 h

′
1 h

′
2

h
′
3 h

′
4 h

′
5

h
′
6 h

′
7 h

′
8

 . compose H′ from h
′ and normalize

8: return H′

9: Val(X , h) . value function, invoked by Optimize()
Input: X = (X0, . . . ,XN−1), the model points; h = (h0, . . . , h8), parame-
ter vector holding the 9 elements of the associated homography matrix H.
Returns a vector with 2N values.

10: N ← |X |
11: Y← new vector of length 2N
12: for j ← 0, . . . , N−1 do
13: (X,Y)←Xj . see Eqns. (70)–(71)

14: s← h6 ·X + h7 · Y + h8 . w = (h6, h7, h8) · (X,Y, 1)
ᵀ

15:

(
u
v

)
← 1

w
·
(
h0 h1 h2
h3 h4 h5

)
·

XY
1

 . uj = hom−1(H·hom(Xj))

16: Y2j ← u, Y2j+1 ← v

17: return Y

18: Jac(X , h) . Jacobian function, invoked by Optimize()
Input: X = (X0, . . . ,XN−1), the model points; h = (h0, . . . , h8), parameter
vector with the 9 elements of the associated homography matrix H. Returns
the Jacobian matrix of size 2N × 9.

19: N ← |X |
20: J← new matrix of size 2N × 9
21: for j ← 0, . . . , N−1 do
22: (X,Y)←Xj

23: sx ← h0 ·X + h1 · Y + h2 . see Eqns. (73)–(76)
24: sy ← h3 ·X + h4 · Y + h5
25: w ← h6 ·X + h7 · Y + h8
26: J2j,∗ ← (Xw ,

Y
w ,

1
w , 0, 0, 0,

−sx·X
w

2 , −sx·Y
w

2 , −sx
w

2) . fill row 2j

27: J2j+1,∗ ← (0, 0, 0, Xw ,
Y
w ,

1
w ,
−sy·X
w

2 ,
−sy·Y
w

2 ,
−sy
w

2) . fill row 2j+1

28: return J

Burger – Zhang’s Camera Calibration Algorithm 29

Algorithm 4.4 Calculation of intrinsic camera parameters (Version A).

1: GetCameraIntrinsics(H)
Input: H = (H0, . . . ,HM−1), a sequence of homography matrices. Returns
the (common) intrinsic camera matrix A.

2: M = |H|
3: V← new matrix of size 2M × 6
4: for i← 0, . . . ,M−1 do
5: H← H(i)
6: V2i,∗ ← v0,1(H) . fill row 2i (see def. below)
7: V2i+1,∗ ← v0,0(H)− v1,1(H) . fill row 2i+1

Find the least-squares solution to the homogen. system (e. g., by SVD):
8: b← Solve(V · b = 0) . b = (B0, . . . , B5)

9: w ← B0B2B5 −B
2
1B5 −B0B

2
4 + 2B1B3B4 −B2B

2
3 . Eqn. (104)

10: d← B0B2 −B
2
1 . Eqn. (105)

11: α←
√
w/(d ·B0) . Eqn. (99)

12: β ←
√
w/d2 ·B0 . Eqn. (100)

13: γ ←
√
w/(d2 ·B0) ·B1 . Eqn. (101)

14: uc ← (B1B4 −B2B3)/d . Eqn. (102)
15: vc ← (B1B3 −B0B4)/d . Eqn. (103)

16: A←

α γ uc
0 β vc
0 0 1


17: return A

18: Definition: vp,q(H) :=


H0,p ·H0,q

H0,p ·H1,q +H1,p ·H0,q

H1,p ·H1,q

H2,p ·H0,q +H0,p ·H2,q

H2,p ·H1,q +H1,p ·H2,q

H2,p ·H2,q



ᵀ

Burger – Zhang’s Camera Calibration Algorithm 30

Algorithm 4.5 Calculation of intrinsic camera parameters (Version B, using
Cholesky decomposition). See Alg. 4.4 for the definition of vp,q(H).

1: GetCameraIntrinsics(H)
Input: H = (H0, . . . ,HM−1), a sequence of homography matrices.
Returns the (common) intrinsic camera matrix A.

2: M = |H|
3: V← new matrix of size 2M × 6
4: for i← 0, . . . ,M−1 do
5: H← H(i)
6: V2i,∗ ← v0,1(H) . set row vector 2i (see below)
7: V2i+1,∗ ← v0,0(H)− v1,1(H) . set row vector 2i+ 1

Solve the homog. system (e. g. by singular value decomposition):
8: b← Solve(V · b = 0) . b = (B0, . . . , B5)

9: B←
(
B0 B1 B3

B1 B2 B4

B3 B4 B5

)
10: if (B0 < 0 ∨B2 < 0 ∨B5 < 0) then
11: B← −B . make sure B is positive definite

12: L← Solve(L · Lᵀ
= B) . by Cholesky decomposition (see Sec. C)

13: A← (L−1)
ᵀ · L2,2 . L2,2 ∈ R is the element of L at position (2, 2)

14: return A

Algorithm 4.6 Calculation of extrinsic view parameters.

1: GetExtrinsics(A,H)
Input: H = (H0, . . . ,HM−1), a sequence of homography matrices.
Returns a sequence of extrinsic view parameters W = (W0, . . . ,WM−1),
with Wi = (Ri | ti).

2: W ← ()
3: for i← 0, . . . ,M−1 do
4: H← H(i)
5: W← EstimateViewTransform(A,H) . W = (R | t)
6: W ←W ` (W)

7: return W

8: EstimateViewTransform(A,H)
9: h0 ← H∗,0 . h0 = (H0,0, H1,0, H2,0)

10: h1 ← H∗,1 . h1 = (H0,1, H1,1, H2,1)
11: h2 ← H∗,2 . h2 = (H0,2, H1,2, H2,2)

12: κ← 1/‖A−1 · h0‖
13: r0 ← κ ·A−1 · h0

14: r1 ← κ ·A−1 · h1

15: r2 ← r0 × r1 . 3D cross (vector) product

16: t← κ ·A−1 · h2 . translation vector

17: R̃← (r0 | r1 | r2) . initial rotation matrix
18: R←MakeTrueRotationMatrix(R̃) . see end of Sec. 3.4.
19: return (R | t)

Burger – Zhang’s Camera Calibration Algorithm 31

Algorithm 4.7 Estimation of the radial lens distortion parameters.

1: EstLensDistortion(A,W,X , U̇)
Input: A, the estimated intrinsic camera parameters; W = (W0, . . . ,
WM−1), with Wi = (Ri | ti), the estimated extrinsic parameters (cam-

era views); X = (X0, . . . ,XN−1), the target model points; U̇ = (U̇0, . . . ,

U̇M−1), the observed sensor points, with U̇ i = (u̇i,0, . . . , u̇i,N−1) being the
points for view i. Returns the vector of estimated lens distortion coefficients.

2: M ← |W| . number of views
3: N ← |X | . number of model points
4: (uc, vc)← (A0,2,A1,2) . proj. center (in sensor coord.)

Set up matrix D and vector ḋ (see Eqn. (119)):
5: D← new matrix of size 2MN × 2
6: ḋ← new vector of length 2MN
7: l← 0

8: for i← 0, . . . ,M−1 do . view index i
9: for j ← 0, . . . , N−1 do . for each model point

10: (x, y)← P̌(Wi,Xj) . normalized proj. (see Eqn. (20))

11: r ←
√
x2 + y2 . radius in the normalized proj.

12: (u, v)← P(A,Wi,Xj) . project to sensor (see Eqn. (24))
13: (du, dv)← (u− uc, v − vc)
14: D2l,∗ ← (du ·r

2, du ·r
4) . fill row 2l of matrix D

15: D2l+1,∗ ← (dv ·r
2, dv ·r

4) . fill row 2l+1 of matrix D

16: (u̇, v̇)← u̇i,j . observed image point u̇i,j
17: ḋ2l ← (u̇− u) . set element 2l of vector ḋ
18: ḋ2l+1 ← (v̇ − v) . set element 2l + 1 of vector ḋ

19: l← l + 1

20: k← Solve(D · k = ḋ) . lin. least-squares solution, e. g., by SVD

21: return k . k = (k0, k1)
ᵀ

Burger – Zhang’s Camera Calibration Algorithm 32

Algorithm 4.8 Overall, non-linear refinement. Goal: find the intrinsic and
extrinsic parameters that minimize E =

∑M−1
i=0

∑N−1
j=0 ‖u̇i,j − P(a,wi,Xj)‖

2.

1: RefineAll(A,k,W,X , U̇)

Input: A: camera intrinsics; k: lens distortion coefficients; W = (Wi):
extrinsic view parameters; X = (X0, . . . ,XN−1): the target model

points; U̇ = (u̇i,j): the observed image points, Returns refined estimates
〈Aopt,kopt,Wopt〉 for the camera intrinsics, distortion parameters, and the
camera view parameters, respectively.

2: Pinit ← ComposeParameterVector(A,k,W) . see below

3: X← (X0,X0, . . . ,XN−1,XN−1︸ ︷︷ ︸
for view 0

, . . . ,X0,X0, . . . ,XN−1,XN−1︸ ︷︷ ︸
for view M−1

)
ᵀ

4: Ẏ← (u̇0,0, v̇0,0, . . . , u̇0,N−1, v̇0,N−1︸ ︷︷ ︸
for view 0

, . . . , u̇M−1,0, . . . , v̇M−1,N−1︸ ︷︷ ︸
for view M−1

)
ᵀ

5: P← Optimize(Val,Jac, X, Ẏ, Pinit) . LM-optim., see Eqn. (201)

6: return DecomposeParameterVector(P) . = 〈Aopt,kopt,Wopt〉

7: ComposeParameterVector(A,k,W)
Input: A =

(α γ uc

0 β vc

)
: the estimated camera intrinsics; k = (k0, k1): the

estimated lens distortion coefficients; W = (W0, . . . ,WM−1), with Wi =
(Ri | ti): extrinsic view parameters. Returns a parameter vector P of length
7 +M · 6.

8: a← (α, β, γ, uc, vc, k0, k1) . see Eqn. (120)
9: P← a, M ← |W|

10: for view index i← 0, . . . ,M − 1 do
11: (R | t)←Wi . t = (tx, ty, tz)

ᵀ

12: ρ← ToRodriguesVector(R) . ρ = (ρx, ρy, ρz), see Alg. 4.10

13: w ← ρ` (t
ᵀ
) . w = (ρx, ρy, ρz, tx, ty, tz)

14: P← P`w

15: return P

16: DecomposeParameterVector(P)
Input: P, parameter vector of length 7 + M · 6 (with M being the number
of views). Returns the associated camera matrix A, the lens distortion
coefficients k, and the view transformations W = (W0, . . . ,WM−1).

17: (α, β, γ, uc, vc, k0, k1)← (p0, . . . , p6)

18: A←

α γ uc
0 β vc
0 0 1

, k← (k0, k1) , W ← (), M ← |W|

19: for view index i← 0, . . . ,M − 1 do
20: m← 7 + 6 · i
21: ρ← (pm, . . . , pm+2) . ρ = (ρx, ρy, ρz)

22: t← (pm+3, . . . , pm+5)
ᵀ

. t = (tx, ty, tz)
ᵀ

23: R← ToRotationMatrix(ρ) . see Alg. 4.10
24: W← (R | t)
25: W ←W ` (W)

26: return 〈A,k,W〉

Burger – Zhang’s Camera Calibration Algorithm 33

Algorithm 4.9 Value and Jacobian functions referenced in Alg. 4.8. The func-
tion Val(X , P) calculates the value of the optimization model for the target
points in X and the model parameters P. The function Jac(X , P) calculates the
associated Jacobian matrix, as specified in Eqn. (133).

1: Val(X , P) . the value function
Input: X = (X0, . . . ,XN−1), the target model points; P = (p0, . . . , pK−1),
the vector of camera and all view parameters. Returns a vector of length
2MN containing the projected point coordinates for all views.

2: M ← |W| . number of views
3: N ← |X | . number of model points
4: a← (p0, . . . , p6) . get the 7 camera parameters from P

5: Y← ()
6: for i← 0, . . . ,M−1 do . view index
7: m← 7 + 6 · i
8: w ← (pm, . . . , pm+5) . extract view parameters wi

9: for j ← 0, . . . , N−1 do . point index
10: (u, v)← P(a,w,Xj) . project the model point Xj

11: Y← Y` (u, v)

12: return Y . Y = (u0,0, v0,0, . . . , uM−1,N−1, vM−1,N−1)

13: Jac(X , P) . the Jacobian function
Input: X = (X0, . . . ,XN−1), the target model points; P = (p0, . . . , pK−1),
the vector of camera and all view parameters. Returns the Jacobian matrix
of size 2MN ×K (with K = 7 + 6M). Partial derivatives can be calculated
analytically or numerically (see Sec. 3.6.4 for details).

14: M ← |W| . number of views
15: N ← |X | . number of model points
16: K ← |P| . number of parameters
17: a← (p0, . . . , p6) . get the 7 camera parameters from P

18: J← new matrix of size 2MN ×K

19: for k ← 0, . . . ,K−1 do . parameter index
20: r ← 0
21: for i← 0, . . . ,M−1 do . view index
22: m← 7 + 6 · i
23: w ← (pm, . . . , pm+5) . extract view parameters wi

24: for j ← 0, . . . , N−1 do . point index

25: Jr+0,k ←
∂Px(a,w,Xj)

∂pk
. partial deriv. of Px w.r.t. pk

26: Jr+1,k ←
∂Py(a,w,Xj)

∂pk
. partial deriv. of Py w.r.t. pk

27: r ← r + 2

28: return J

Burger – Zhang’s Camera Calibration Algorithm 34

Algorithm 4.10 Conversions between a rotation matrix and the associated
Rodrigues rotation vector. Note that the function ToRodriguesVector(R) is
usually implemented via quaternions, while the direct method shown below was
adopted from [11]. The corresponding Java code is based on the implementation
provided by the Apache Commons Math library. See also Sec. A.2.4 in the
Appendix.

1: ToRodriguesVector(R)
Input: R = (Ri,j), a proper 3D rotation matrix. Returns the associated
Rodrigues rotation vector (ρ).

2: p← 0.5·
(
R2,1−R1,2

R0,2−R2,0

R1,0−R0,1

)
3: c← 0.5 · (trace(R)− 1)

4: if ‖p‖ = 0 then
5: if c = 1 then . Case 1
6: ρ = (0, 0, 0)
7: else if c = −1 then . Case 2
8: R+ ← R + I
9: v ← column vector of R+ with max. norm

10: u← 1
‖v‖ · v . rotation axis u = (u0, u1, u2)

11: if (u0 < 0) ∨ (u0 = 0 ∧ u1 < 0) ∨ (u0 = u1 = 0 ∧ u2 < 0) then
12: u← −u . switch sign for correct hemisphere

13: ρ = π · u . θ = π
14: else
15: ρ = nil . this should never happen

16: else . Case 3
17: u← 1

‖p‖ · p . rotation axis

18: θ ← tan−1
(‖p‖
c

)
. use Math.atan2(‖p‖ , c) or equiv.

19: ρ← θ · u
20: return ρ

21: ToRotationMatrix(ρ)
Input: ρ = (ρx, ρy, ρz), a 3D Rodrigues rotation vector. Returns the asso-
ciated rotation matrix (R).

22: θ ← ‖ρ‖
23: ρ̂← 1

‖ρ‖ · ρ . unit vector ρ̂ = (ρ̂x, ρ̂y, ρ̂z)

24: W←
(

0 −ρ̂z ρ̂y
ρ̂z 0 −ρ̂x
−ρ̂y ρ̂x 0

)
25: R← I + W · sin(θ) + W ·W · (1− cos(θ))
26: return R

Burger – Zhang’s Camera Calibration Algorithm 35

5 Image Rectification

Removing the camera’s lens distortion from a real image is an important task,
e. g., in the context of augmented reality systems. Graphic APIs (such as
OpenGL, DirectX etc.) do not consider lens distortion, i. e., the virtual cameras
used to render images are purely “pinhole”.

5.1 Removing lens distortion

We can remove the lens distortion from a given real image I by geometric
transformation to a new image I ′, in which each point u′ = (u′, v′)

ᵀ
is related

to the original coordinates u = (u, v)
ᵀ

as

u′ = T (u). (134)

Here T is the geometric 2D mapping I 7→ I ′ which only depends on the intrinsic
camera parameters (the extrinsic view parameters are of no relevance here). For
rendering the new image I ′ by the usual target-to-source mapping (see [2, Sec.
21.2.2]) we are primarily interested in the inverse transformation T−1,

T−1 : I ′ 7→ I, (135)

which (luckily) makes everything easier, since it avoids inverting the radial dis-
tortion function D(). To get from the new image I ′ to the observed image I,
the associated geometric transformation T−1 consists of the following steps:

Step 1: Moving backwards in the projection chain19 from the rectified sensor
points (u′, v′), the corresponding points on the normalized image plane
are obtained be inverting the (known) internal camera mapping A (see
Eqn. (37)) asx′y′

1

 =

α γ uc
0 β vc
0 0 1


︸ ︷︷ ︸

A

−1

·

u′v′
1

 =

 1
α − γ

αβ
−buc+γvc

αβ

0 1
β −vcβ

0 0 1


︸ ︷︷ ︸

A
−1

·

u′v′
1

 (136)

and hence (
x′

y′

)
=

(
1
α − γ

αβ
−buc+γvc

αβ

0 1
β −vcβ

)
·
(
u′

v′

)
, (137)

or simply (a kind of pseudo-inverse)

x′ = A−1 · u′. (138)

Since there should be no lens distortion for the image I ′, x′ is implicitly
considered the undistorted position in the normalized projection plane.

Step 2: Next, moving forward to the distorted image I, we apply the radial
warping (see Eqn. (31))

x̃ = warp(x′,k) = x′ · [1 +D(‖x′‖,k)], (139)

with the camera’s lens distortion parameters k = (k0, k1).

19
See Fig. 3.

Burger – Zhang’s Camera Calibration Algorithm 36

Original (lens distorted) images

Rectified images

Figure 5: Image rectification example.

Step 3: Finally, we again apply the internal camera mapping (Eqn. (37)),

u = A · x̃, (140)

to obtain the coordinates u in the observed image I.

In summary, the required geometric mapping T−1 from the rectified image I ′

to the distorted image I can be written as

u = T−1(u′) = A · warp(A−1 · u′). (141)

Now the undistorted image I ′ can be easily rendered from the distorted image
I using target-to-source rendering [2, Sec. 21.2] as follows:

1: for all image coordinates u′ of I ′ do . u′ ∈ Z2

2: u← T−1(u′) . u ∈ R2

3: val ← Interpolate(I,u) . interpolate I at pos. u
4: I ′(u′)← val

5.2 Simulating different camera intrinsics

For some reason it may be interesting to simulate a camera b with different
parameters than the camera a used for the original images. In this case, the
geometric mapping in Eqn. (141) changes to

T−1ab (u′) = Aa · warpa(warp−1b (A−1b · u
′)), (142)

where warp−1b denotes the inverse radial lens distortion for camera b, and Aa,Ab

are the intrinsic matrices for the two cameras (which may be the same, of
course). Thus, given an image Ia that was taken with camera a we can transform

Burger – Zhang’s Camera Calibration Algorithm 37

it to a new image Ib that would show the same scene if taken with a different
camera b with the same view position and orientation, i. e.,

T−1ab : Ib 7→ Ia, (143)

with Ia and Ib being the source and target image, respectively.
The only additional task in Eqn. (142) is the inversion of the radial lens

distortion function warp(x). From Eqn. (31) we get

warp(x,k) = x̃ = x · [1 +D(‖x‖,k)] (144)

= x · ‖x‖ · [1 +D(‖x‖,k)]

‖x‖
= x · r̃

r
= x · frad(r)

r
, (145)

where (see Eqns. 30 and 32)

frad(r) = r · [1 +D(r,k)] = r + k0 · r
3 + k1 · r

5. (146)

Thus, given a point x̃ with radius r̃, the inverse warping is defined as

warp−1(x̃,k) = x = x̃ · r
r̃

= x̃ · f
−1
rad(r̃)

r̃
= x̃ · f

−1
rad(‖x̃‖)
‖x̃‖

. (147)

5.2.1 Inverting the radial distortion

Calculating the inverse of the warping function f−1rad(r̃) for a given distorted
radius r̃ means to find the argument value(s) r, such that frad(r) = r̃ or

frad(r)− r̃ = r + k0 · r + k1 · r
5 − r̃ = 0. (148)

Thus, for a given (fixed) value r̃, the solution is a root of the polynomial in r,

g(r) = −r̃ + r + k0 · r
3 + k1 · r

5, (149)

for r ≥ 0. Unfortunately (at least to the knowledge of the author), the solution
does not come in closed form but must be found with numerical techniques, such
as the Newton-Raphson method. Since the radial mapping frad(r) is usually
close to the identity function, we can use rinit = r̃ as an ad hoc start value for
the root finder.20 The following code segment (contained in class Camera) shows
the concrete implementation of f−1rad(r̃) using a numerical solver from the ACM
library:

double fRadInv(double R) { // R is the distorted radius

NewtonRaphsonSolver solver = new NewtonRaphsonSolver();

int maxEval = 20;

double k0 = K[0];

double k1 = K[1];

double[] coefficients = {-R, 1, 0, k0, 0, k1};

PolynomialFunction g = new PolynomialFunction(coefficients);

double rInit = R;

double r = solver.solve(maxEval, g, rInit);

return r; // the undistorted radius

}

20
More intelligent approaches can be imagined. This implementation uses the ACM Newton-

RaphsonSolver class which only requires an initial start value. This start value may be too far
away for root solvers that require an initial min/max bracket, with function values of opposite
sign at the ends of the bracket (such as LaguerreSolver and BrentSolver).

Burger – Zhang’s Camera Calibration Algorithm 38

Images taken with the original camera (k0 = −0.2286, k1 = 0.1904).

Transformed images with modified distortion parameters (k0 = −0.1, k1 = 2.0).

Figure 6: Modified lens distortion example. The original images (top row)
are taken with camera a. For camera b (bottom row) only the lens distortion
parameters k0, k1 were changed. All other intrinsic camera parameters are
identical to camera a.

The solution is typically found after only a few iterations. Note that the above
fRadInv() method is called for each image pixel, thus an efficient implementa-
tion is important.

An example of images being transformed to a modified camera are shown in
Fig. 6. In this case the two cameras are identical except for the lens distortion
parameters.

6 Java/ImageJ Implementation

This section describes a Java implementation of Zhang’s calibration method
that closely follows the above description (being analogously structured and
using similar symbols wherever possible). It consists of a small Java API and
several ImageJ 21 plugins demonstrating its use.22 The API requires Apache
Commons Math23 as the only external library. Note that this implementation
performs only the geometric part of the calibration and does not include any
functionality for the detection of target points in the calibration images.

6.1 API description

Only the most important classes and methods are listed below. For additional
information consult the JavaDoc documentation or the source files.

21
http://rsbweb.nih.gov/ij/index.html

22
The source code for this library is openly available at www.imagingbook.com.

23
http://commons.apache.org/math/

http://rsbweb.nih.gov/ij/index.html
www.imagingbook.com
http://commons.apache.org/math/

Burger – Zhang’s Camera Calibration Algorithm 39

Class Calibrator (package calibration.lib.zhang)

Calibrator(Parameters params, Point2D[] model)

Constructor. Takes a parameter object (of type Calibrator.Parameters)
and a sequence of 2D model points (Xj , Yj , 0).

void addView(Point2D[] pts)

Adds a new view set, i. e., a sequence of observed image points (uj , vj).
These points must be in correspondence with the model points passed to
the constructor, i. e., they must have the same count and ordering.

Camera calibrate()

Performs the actual calibration (using the supplied model and view sets)
and returns a Camera object that specifies all intrinsic camera parameters.

Camera getInitialCamera()

Returns the initial estimate of the camera parameters (before refinement).

Camera getFinalCamera()

Returns the final camera parameters (same as calibrate()).

ViewTransform[] getInitialViews()

Returns the initial estimates of the view transformations (extrinsic camera
parameters) for each view set.

ViewTransform[] getFinalViews()

Returns the final view transformations (extrinsic camera parameters) for
each view set.

Class Camera (package calibration.lib.zhang)

Camera(double alpha, double beta, double gamma, double uc, double

vc, double k0, double k1))

Constructor. Takes the intrinsic parameters α, β, γ, uc, vc and the lens
distortion parameters k0, k1. All camera objects are immutable.

Camera (RealMatrix A, double[] K)

Constructor. Creates a standard camera with the intrinsic transformation
matrix A and a vector of distortion parameters K = (k0, k1, . . .).

Camera (double[] s)

Constructor. Takes the camera parameters as a single vector s = (α, β, γ,
uc, vc, k0, k1). This constructor is primarily used internally for non-linear
optimization.

6.2 ImageJ Demo plugins

The distribution includes Zhang’s original set of test images (packaged as Java
resources), which are used by the following ImageJ demo plugins. Other image
data sets can be easily incorporated.

Open Test Images

Opens Zhang’s standard calibration images (bundled with the EasyCalib

program) as a stack of RGB images. The image data are stored as a

Burger – Zhang’s Camera Calibration Algorithm 40

resource in the local Java class tree. This plugin also demonstrates the
use of the resource access mechanism.

Demo Zhang Projection

This plugin projects opens an image stack containing the 5 Zhang test
images and projects the model points into each view, using the (known)
camera and view parameters. All data are part of Zhang’s demo data set
that comes with the EasyCalib program. No calibration is performed.

Demo Zhang Projection Overlay Same as above, but all graphic elements are
drawn as non-destructive vector overlays (look closely!). The complete
stack with overly can be saved as a TIFF file.

Demo Zhang Calibration

This plugin performs Zhang’s camera calibration on the pre-calculated
point data for the N given target views. Based on the estimated intrinsic
and extrinsic (view) parameters, the corner points of the 3D target model
are then projected onto the corresponding calibration images (a stack).
All rendering is done by pixel drawing (no graphic overlays).

Demo Rectification

This plugin projects opens an image stack containing the 5 Zhang test
images and removes the lens distortion based on the calibrated camera
parameters. The resulting rectified frames are shown in a new image
stack.

Demo Replace Camera

This plugin projects opens an image stack containing the 5 Zhang test
images (assumed to be taken with camera A) and re-renders the images by
mapping them to a new camera B. In this example, only the lens distortion
coefficients are modified but in principle all intrinsic parameters of camera
B could be changed.

Demo View Interpolation

This plugin performs interpolation of views, given a sequence of key views.
Translations (3D camera positions) are interpolated linearly. Pairs of ro-
tations are interpolated by linear mixture of the corresponding quaternion
representations.24

24
See http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/

#How do I interpolate between 2 quaternions .

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#How_do_I_interpolate_between_2_quaternions__
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#How_do_I_interpolate_between_2_quaternions__

Burger – Zhang’s Camera Calibration Algorithm 41

Appendix

A 3D/2D Geometry

Throughout this document we use

x = (x, y, z)
ᵀ

=

xy
z

 (150)

to denote a 3D vector or the position of a 3D point and

u = (u, v)
ᵀ

=

(
u
v

)
(151)

as the 2D position of an image point on the sensor plane.

A.1 Homogeneous coordinates

To convert a n-dimensional cartesian point x = (x0, . . . , xn−1)
ᵀ

to homogeneous

coordinates, we use the notation25

x = hom(x) =


x0
...
xn−1
xn

 =


x0
...
xn−1
1

 , (152)

Similarly, for converting a homogeneous vector x = (x0, . . . , xn)
ᵀ

back to Carte-
sian coordinates we write

x = hom−1(x) =

 x0
...

xn−1

 =
1

xn
·

 x0
...

xn−1

 , (153)

assuming that xn 6= 0.
Two homogeneous points x1, x2 are equivalent (≡), if they map to the same

Cartesian point, i. e.,

x1 ≡ x2 ⇐⇒ hom−1(x1) = hom−1(x2). (154)

Moreover, since hom−1(x) = hom−1(s ·x) for any nonzero factor s ∈ R, a scaled
homogeneous point is equivalent to the original point, i. e.,

x ≡ s · x. (155)

Homogeneous coordinates can be used for vector spaces of arbitrary dimension,
including 2D coordinates.

25
The operator hom() is introduced here for convenience and clarity. For some reason no

suitable standard operators seems to exist.

Burger – Zhang’s Camera Calibration Algorithm 42

A.2 Rigid body transformations in 3D

When an object moves in 3D without changing its size or shape, it is subject to
a rigid transformation, changing position and orientation. Let us assume that a
rigid 3D object is represented by the point set X0,X1, . . . ,XN−1. Under rigid

body transformation every (non-homogeneous) 3D point Xi = (Xi, Yi, Zi)
ᵀ

on
that object is mapped to a new point

X ′i = R ·Xi + t . (156)

The rigid motion is modeled in (156) as a 3D rotation (about the origin of
the coordinate system) followed by a translation. R is an (orthonormal26) 3D
rotation matrix

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (157)

(as described below) and t is a 3D translation vector

t =

txty
tz

 . (158)

A.2.1 Rotations in 3D

The matrix R in (157), which describes arbitrary rotation in 3D, is composed of
three individual rotations Rx, Ry, Rz about the X, Y , and Z axes, respectively:
A rotation about the X-axis by an angle θx:

Rx =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 . (159)

A rotation about the Y -axis by an angle θy:

Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 . (160)

A rotation about the Z-axis by an angle θz:

Rz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 . (161)

The complete matrix R for an arbitrary rotation in 3D is obtained as

R = Rx ·Ry ·Rz =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (162)

=

(cos θy cos θz − cos θy sin θz sin θy

sin θx sin θy cos θz+cos θx sin θz cos θx cos θz−sin θx sin θy sin θz − sin θx cos θy

− cos θx sin θy cos θz+sin θx sin θz sin θx cos θz+cos θx sin θy sin θz cos θx cos θy

)
.

(163)

26
A quadratic matrix R is orthonormal if R · Rᵀ

= R
ᵀ · R = I, where I is the identity

matrix.

Burger – Zhang’s Camera Calibration Algorithm 43

Notice that the order of rotations in (162) is important, i.e., the result of
RxRyRz is different to RzRyRx for the same set of angles θx, θy, θz (also
see [12, p. 333]). Using homogeneous coordinates, the rigid rotation by R can
be expressed as X ′i = MR ·Xi or

X ′i
Y ′i
Z ′i
1

 =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1


︸ ︷︷ ︸

MR

·


Xi

Yi
Zi
1

 . (164)

Obviously, homogeneous coordinates are not required to express a pure rotation
alone.

A.2.2 Translation in 3D

The 3D translation required in (156),

X ′i = Xi + t =

Xi

Yi
Zi

+

txty
tz

 . (165)

can also be specified as a matrix multiplication with homogeneous coordinates
in the form X ′i = MT ·Xi, or

X ′i
Y ′i
Z ′i
1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


︸ ︷︷ ︸

MT

·


Xi

Yi
Zi
1

 . (166)

A.2.3 Complete rigid motion

The complete rigid transformation, combining rotation and translation as in
(156), in homogeneous coordinates is then obtained as

X ′i = MT ·MR ·Xi (167)

which, by inserting from Eqn. (164) and Eqn. (166), expands to
X ′i
Y ′i
Z ′i
1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


︸ ︷︷ ︸

MT

·


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1


︸ ︷︷ ︸

MR

·


Xi

Yi
Zi
1

 . (168)

Thus, using homogeneous coordinates, the complete rigid body (rb) motion can
be expressed as a single matrix multiplication

X ′i = Mrb ·Xi, (169)

Burger – Zhang’s Camera Calibration Algorithm 44

where

Mrb = MT ·MR =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 =

(
R t

0
ᵀ
3 1

)
. (170)

Due to the use of homogenous coordinates, rigid body motion can be expressed
as a linear transformation.27 The transformation in Eqn. (170) has 12 variables
but only 6 degrees of freedom: 3 for the rotations θx, θy, θz contained in R, and
tx, ty, tz in the translation vector t.

A.2.4 Converting rotations

The usual method for parameterizing the rotation matrix with 3 scalar quan-
tities is based on the Euler-Rodrigues representation (see Sec. 3.6.2). Conver-
sion between rotation matrices and Rodrigues rotation vectors is usually ac-
complished via the quaternion representation. This also applies to the Apache
Commons Math library, which is used in the actual Java implementation. The
following “recipe” is provided for completeness and was adapted from the de-
scription in [11]. For a concise summary see the corresponding procedures in
Alg. 4.10.

Rotation matrix to Rodrigues vector. Given a 3 × 3 rotation matrix28

R = (Ri,j), the corresponding Rodrigues vector ρ can be calculated as follows
[11]. First we define the quantities

p =
1

2
·

R2,1 −R2,1

R0,2 −R2,0

R1,0 −R0,1

 , c =
trace(R)− 1

2
(171)

and differentiate the following three cases:

Case 1: If ‖p‖ = 0 and c = 1, then ρ = 0.

Case 2: If ‖p‖ = 0 and c = −1, let v be the maximum (non-zero) norm column
vector of the matrix R+ = R + I, then

u =
1

‖v‖
· v and ρ = π · S(u), (172)

with S() as defined in Eqn. (174) below.

Case 3: Otherwise (if ‖p‖ 6= 0),

u =
1

‖p‖
· p, θ = tan−1

(
‖p‖
c

)
, and ρ = θ · u. (173)

To avoid singularities, tan−1(‖p‖ /c) in Eqn. (173) should be calculated with
the standard Java method Math.atan2(‖p‖ , c) (or equivalent). The function

27
Translation by itself is not linear transformation in non-homogenous coordinates.

28
A proper rotation R must satisfy R

ᵀ ·R = R ·Rᵀ
= I and det(R) = 1.

Burger – Zhang’s Camera Calibration Algorithm 45

S(x), used in Eqn. (172), conditionally flips the signs of the coordinates of the
supplied 3D vector x = (x0, x1, x2):

S(x) =

{
−x if (x0 < 0) ∨ (x0 = 0 ∧ x1 < 0) ∨ (x0 = x1 = 0 ∧ x2 < 0),

x otherwise.
(174)

Rodrigues vector to Rotation matrix. Given a 3D rotation specified by
the Rodrigues vector ρ = (ρx, ρy, ρz), as defined in Eqn. (126), the corresponding
rotation matrix R can be found as follows. First, we extract the rotation angle
θ (with |θ| < π) and the unit direction vector ρ̂ by

θ = ‖ρ‖ and ρ̂ = (ρ̂x, ρ̂y, ρ̂z) =
ρ

‖ρ‖
. (175)

The associated rotation matrix is defined as

R = I + W · sin(θ) + W ·W · (1− cos(θ)), (176)

where I is the 3× 3 identity matrix, and

W =

(
0 −ρ̂z ρ̂y
ρ̂z 0 −ρ̂x
−ρ̂y ρ̂x 0

)
(177)

is the cross-product matrix.29 The expanded rotation matrix is30

R =

(
cos θ+ρ̂

2
x(1−cos θ) −ρ̂z sin θ+ρ̂xρ̂y(1−cos θ) ρ̂y sin θ+ρ̂xρ̂z(1−cos θ)

ρ̂z sin θ+ρ̂xρ̂y(1−cos θ) cos θ+ρ̂
2
y(1−cos θ) −ρ̂x sin θ+ρ̂y ρ̂z(1−cos θ)

−ρ̂y sin θ+ρ̂xρ̂z(1−cos θ) ρ̂x sin θ+ρ̂y ρ̂z(1−cos θ) cos θ+ρ̂
2
z(1−cos θ)

)
.

(178)

B Normalizing 2D point sets

In general, normalizing a given 2D point set X = (x0, . . . ,xN−1) is accomplished
by shifting and scaling all points such that the centroid of the transformed set
is aligned with the origin and its diameter has a predefined size. The elements
of the normalized point set,

X
′ = normalize(X) = (x′0, . . . ,x

′
N−1) (179)

are obtained as x′j = NX · xj , using homogeneous coordinates, i. e.,

x′j = hom−1
[
NX · hom(xj)

]
. (180)

NX is a dedicated normalization matrix for the point set X, typically with the
structure

NX =

sx 0 −sxx̄
0 sy −sy ȳ
0 0 1

 and the inverse N−1X =

 1
sx

0 x̄

0 1
sy

ȳ

0 0 1

, (181)

29
Note that W · ρ = 0 and thus applying Rρ to an arbitrary point λ · ρ on the rotation

axis yields exactly the same point.
30

http://mathworld.wolfram.com/RodriguesRotationFormula.html

http://mathworld.wolfram.com/RodriguesRotationFormula.html

Burger – Zhang’s Camera Calibration Algorithm 46

where x̄ = (x̄, ȳ)
ᵀ

= 1
N ·
∑N−1
j=0 xj is the centroid of the original point set. For

calculating the scale factor s, several methods can be found in the literature,
two of which are given below.31

Method 1: This method scales the point set (uniformly along both axes) such
that the average distance of the points from the origin is equal to

√
2.32 No

rotation is applied. In this case,

sx = sy =
√

2 ·N ·
(N−1∑
j=0

‖xj − x̄‖
)−1
. (182)

Method 2: Here the scaling is applied non-uniformly in x- and y-direction,
such that the variances along both axis get normalized, i. e.,

sx =

√
2/σ2

x and sy =

√
2/σ2

y, (183)

with the variances σ2
x = 1

N

∑N−1
j=0 (xj−x̄)2 and σ2

y = 1
N

∑N−1
j=0 (yj−ȳ)2, respec-

tively.

Note that none of the above methods is optimal for point sets with high eccen-
tricity that is not aligned with the coordinate axis. There are probably better
methods for normalizing such points sets that also include rotations to align
the dominant orientations with coordinate axes, e. g., by principal component
analysis (PCA).

C Extraction of camera intrinsics by Cholesky
decomposition

In Sec. 3.3, the intrinsic camera parameters A are obtained from the previously
calculated matrix

B = λ · (A−1)
ᵀ ·A−1 = [

√
λ · (A−1)

ᵀ︸ ︷︷ ︸
L

] · [
√
λ ·A−1︸ ︷︷ ︸

L
ᵀ

] (184)

in closed form (see Eqns. (99–105)), where λ ∈ R is an unknown scale factor.
An alternative approach using matrix decomposition is shown here. The inverse
of A has the structure

A−1 =

a0 a1 a2
0 a3 a4
0 0 1

 , (185)

and therefore
√
λ·(A−1) = L

ᵀ
is an upper triangular matrix and

√
λ·(A−1)

ᵀ
= L

is a lower triangular matrix. Given the matrix B = L · Lᵀ
, the Cholesky

decomposition33 can be used to determine L uniquely in the form

L = Chol(B), (186)

31
Method 2 is used in the implementation.

32
The relevance of factor

√
2 is unclear to the author. Replacing it by 1 should not affect

the numerical stability.
33

http://en.wikipedia.org/wiki/Cholesky decomposition

http://en.wikipedia.org/wiki/Cholesky_decomposition

Burger – Zhang’s Camera Calibration Algorithm 47

if B is a symmetric, positive definite matrix.34

From L
ᵀ

=
√
λ ·A−1 we see that L

ᵀ
is identical to A−1, except for the scale

factor s =
√
λ. Since the lower-right element of A−1 must be 1, the result is

A−1 =
1

s
·Lᵀ

and thus A = s·(Lᵀ
)−1 = s·(L−1)

ᵀ
, (187)

with s = L
ᵀ
2,2 = L2,2.

While B is certainly symmetric, it is not necessarily positive definite, since λ
may be negative. A simple test for positive definiteness is to check if all diagonal
elements are non-negative. If not, we apply the Cholesky decomposition to −B.
The following code segment shows how this may be accomplished with the
Apache Commons Math API:

RealMatrix B; // obtained from vector b

if (B.getEntry(0,0)<0 || B.getEntry(1,1)<0 || B.getEntry(2,2)<0) {

B = B.scalarMultiply(-1); // make sure B is positive definite

}

CholeskyDecomposition cd = new CholeskyDecomposition(B);

RealMatrix L = CD.getL();

RealMatrix A =

MatrixUtils.inverse(L).transpose().scalarMultiply(L.getEntry(2,2));

A more elegant (and safer) approach is to use the Cholesky decomposition itself
to verify that B is positive definite. If not, the constructor throws a Non-

PositiveDefiniteMatrixException, which can be caught to repeat the de-
composition on −B, as shown in this example:

RealMatrix B;

CholeskyDecomposition cd = null;

try {cd = new CholeskyDecomposition(B);}

catch (NonPositiveDefiniteMatrixException e)

{cd = new CholeskyDecomposition(B.scalarMultiply(-1));} // try -B

RealMatrix L = cd.getL();

RealMatrix A = ...

D Calculating the focal length f

The intrinsic parameters α, β, γ in Eqn. (15) can only be determined up to
an unknown scale factor, i. e., the absolute size of the imaging system (and the
focal length f in particular) cannot be determined from intrinsic parameters
alone. Once the intrinsic parameters

α = fsx, β = fsy, γ = fsθ

are known, the focal length f can be obtained by setting one of the scale param-
eters to a constant value. For example, setting the horizontal scale parameter
sx = 1 we get

f =
α

sx
= α and thus sy =

β

f
=
β

α
. (188)

34
http://en.wikipedia.org/wiki/Positive-definite matrix

http://en.wikipedia.org/wiki/Positive-definite_matrix

Burger – Zhang’s Camera Calibration Algorithm 48

The resulting value f is the focal length measured in terms of horizontal pixel
units.

The actual (physical) focal length is then obtained by multiplying f (in pixel
units) with the actual horizontal pixel spacing ∆x, i. e.,

freal = f ·∆x .

∆x is usually known and constant. For example, given a typical 3×2 sensor chip
of size 22.5 × 15 mm with 3000 × 2000 (6 million) square pixels, the resulting
pixel spacing is

∆x = ∆y =
15 mm

2000
= 0.0075 mm

Assuming sx = sy = 1 and α = f = 3200, the resulting physical focal length is
freal = 3200 · 0.0075 = 24 mm.

E Non-linear optimization with the Levenberg-
Marquart method

For easier understanding, it may be helpful to introduce some common termi-
nology used in optimization.The general problem can be summarized as follows:

Given is a set of m empirical “observations” {〈xi, ẏi〉}, each
composed of an input coordinate xi ∈ Rp and an associated
(measured) scalar output value ẏi ∈ R. It is assumed that
the relation between the xi and ẏi values can be modeled by a
function f (or even multiple functions fi) with a common set
of parameters p ∈ Rn. The goal is to find the parameters that
give the best fit between the observed values ẏi and the output
values yi = f(xi,p) “predicted” by the model function(s).

Note that the set of observations may contain multiple measurements for the
same input position x. In the remaining part of this section, the following
symbols are used:35

m . . . the number of empirical observations (index i),
n . . . dimensionality of the parameter vector p (index j),
p . . . dimensionality of the input coordinates xi,
q . . . dimensionality of the output values yi (see Sec. E.1.6).

E.1 Setting up the “model”

E.1.1 Special case: single model function

To keep things simple, we start with the special case that the relation between
the input coordinates xi and the observed values ẏi is modeled by a single

35
To keep this description as general as possible, the notation used in this chapter is inten-

tionally different (though similar) to the notation used in the remaining parts of the document.
Thus the symbols used here are not directly related to the symbols used to describe camera
calibration. In particular, the symbols x and y do not denote 2D image coordinates but have
different meanings in this context!

Burger – Zhang’s Camera Calibration Algorithm 49

function f(), that is,

ẏi ≈ f(xi,p), (189)

for all observations i = 0, . . . ,m−1, with the n-dimensional parameter vector
p. The “predicted” output value, obtained by applying the model function f()
to the input vector xi, is denoted

yi = f(xi,p). (190)

In general, the predicted value yi is not the same as the observed value ẏi, i. e.,
yi 6= ẏi. For a given parameter vector p, the deviation (error) between the
associated predicted and observed output values is commonly quantified as

ei(p) = |ẏi − yi|
2

= |ẏi − f(xi,p)|2 , (191)

and the goal is to find the parameters p that minimize the overall “least-squares”
error

E(p) =

m−1∑
i=0

ei(p) =

m−1∑
i=0

|ẏi − yi|
2 =

m−1∑
i=0

|ẏi − f(xi,p)|2, (192)

over all m observations 〈xi, ẏi〉. To simplify the notation, we can represent the
set of observations by two vectors X, Ẏ, where

X = (x0, . . . ,xm−1)
ᵀ

(193)

is the vector of sample positions and

Ẏ = (ẏ0, . . . , ẏm−1)
ᵀ
. (194)

is the vector of the associated sample values.36 The “least-squares” error (Eqn.
(192)) to be minimzied can now be conveniently written in the form

E(p) = ‖Ẏ− Y‖2 = ‖Ẏ− F (X,p)‖2, (195)

where the vector of “predicted” values Y is obtained by applying the model
function f(x,p) to all m sample positions xi ∈ X, that is,

Y = F (X,p) =

 y0
...

ym−1

 =

 f(x0,p)
...

f(xm−1,p)

 . (196)

E.1.2 General case: multiple model functions

In general, the underlying model function f() needs not be the same for every
sample (as in Eqn. (196)). Instead, a different model function fi(x,p) may
be assigned to each sample, as long as every model function accepts the same
parameter vector p. We can thus rewrite Eqn. (196) in the general form

F (X,p) = Y =

 y0
...

ym−1

 =

 f0(x0,p)
...

fm−1(xm−1,p)

 . (197)

36
Note that X is a vector of vectors, i. e., actually a matrix.

Burger – Zhang’s Camera Calibration Algorithm 50

In optimization language, the function F (X,p) in Eqn. (197) is called the “value
function”. It evaluates the “model” for all sample positions xi ∈ X with the
common parameters p and returns the results as a vector Y = (y0, . . . , ym−1)

ᵀ
,

with yi = fi(xi,p).

E.1.3 The Jacobian function J()

In addition to the value function F (), the Levenberg-Marquart method requires
the Jacobian of the involved model functions. The function J(X,p), defined
below, returns the m × n Jacobian matrix37 of the multi-dimensional, scalar-
valued function F for the (fixed) input coordinates X = (x0, . . . ,xm−1) and the
variable parameters p ∈ Rn. With the input position xi fixed, each component
function fi(xi,p) only depends on the n-dimensional parameter vector p, and
can thus be treated as a n-dimensional function. For a given input X, the
Jacobian function at a specific “point” (parameter vector) p is

J(X,p) = J =



∂f0(x0,p)
∂p0

∂f0(x0,p)
∂p1

· · · ∂f0(x0,p)
∂pn−1

∂f1(x1,p)
∂p0

∂f1(x1,p)
∂p1

· · · ∂f1(x1,p)
∂pn−1

...
...

. . .
...

∂fm−1(xm−1,p)

∂p0

∂fm−1(xm−1,p)

∂p1
· · · ∂fm−1(xm−1,p)

∂pn−1

 . (198)

The element (i, j) of the Jacobian is the first partial derivative of the component
function fi(x,p) with respect to the single parameter pj . This scalar quantity
indicates, how much the output value of the component function fi() increases
(or decreases) at the specified position x = xi and the parameters settings
p, when only the single parameter pj is modified and everything else remains
fixed. This information is essential for the LM optimizer to efficiently explore
the parameter space in search of the optimal solution.

E.1.4 Calculation of partial derivatives

Depending on the characteristics of the model functions in F , the partial deriva-
tives of the Jacobian may be expressible as analytical functions, which is the
ideal situation. If this is too complicated or impossible, the partial derivatives
can be estimated numerically by applying a minor variation (δ) to the relevant
parameter (pj) and measuring the resulting change of the associated function
output.

Numeric calculation. It is also possible to estimate the partial derivatives
numerically by finite difference approximation in the form

∂fi(x,p)

∂pj
≈

fi(x,p+ δj ·ej)− fk(x,p)

δ
, (199)

which varies the single parameter pj by a small amount δj and measures the
resulting change of the component function fi() at the given position x. Here
ej denotes a unit vector with value 1 at position j and all other elements zero.

37
The elements of a function’s Jacobian matrix are again functions.

Burger – Zhang’s Camera Calibration Algorithm 51

δj ∈ R is a small, positive quantity of change (typ. ≈ 10−8) applied to parameter
pj . For numerical reasons, δj is usually not set to a fixed value but is adapted
to the magnitude of the affected parameter pj in the form

δj =
√
ε ·max(|pj |, 1) , (200)

with the constant ε = 2.2−16 (and thus
√
ε ≈ 1.5 · 10−8), assuming double

arithmetic.38

Note that in Eqn. (199) all other parameters (pk, k 6= j) as well as the coor-
dinate vector x remain unchanged.

E.1.5 Invoking the LM optimization

With X, Ẏ, F , and J set up, as described above, the LM optimization procedure
can be invoked the form

popt ← Optimize(F, J, X, Ẏ,p0), (201)

where p0 is the initial parameter vector or “starting point”. The actual work
is done by the LM optimizer, usually implemented in numerical libraries with a
similar call signature. The result popt is a parameter vector that minimizes the
least-squares deviation between the values predicted by the model (represented
by F) and the observed values in Ẏ, for the set of input coordinates given in X.
Note that the result is a local optimum, i. e., much depends on p0 being a good
“initial guess’.

E.1.6 Handling multi-dimensional output values

While the formulation in Eqn. (197) applies to scalar output values (yi), it
can be used directly to handle multi-dimensional (i. e., vector-valued) output
data as well. Let us assume that our empirical observations {〈xi, ẏi〉} contain
vector-valued input data xi ∈ Rp (as before) as well as vector-valued output
data ẏi = (ẏi,0, . . . , ẏi,q−1) ∈ Rq. In this case the associated model function is
multi-dimensional and vector-valued, i. e.,

f i : R
p 7→ Rq. (202)

The trick is to split this function into q scalar-valued component functions
fi,0, . . . , fi,q−1 (which is always possible), such that

yi = f i(xi,p) =

 yi,0
...

yi,q−1

 =

 fi,0(xi,p)
...

fi,q−1(xi,p)

 . (203)

Each pair 〈xi, ẏi,j〉 can now be treated as a single scalar-valued observation and
yi,j ∈ R as the associated prediction value. The position and value vectors
(corresponding to Eqn. (193) and Eqn. (194), respectively), are expanded to

X = (x0, . . . ,x0︸ ︷︷ ︸
q times

,x1, . . . ,x1︸ ︷︷ ︸
q times

, . . . ,xm−1, . . . ,xm−1︸ ︷︷ ︸
q times

)
ᵀ
, (204)

Ẏ = (ẏ0,0, . . . , ẏ0,q−1︸ ︷︷ ︸
ẏ0

, ẏ1,0, . . . , ẏ1,q−1︸ ︷︷ ︸
ẏ1

, . . . , ẏm−1,0, . . . , ẏm−1,q−1︸ ︷︷ ︸
ẏm−1

)
ᵀ
, (205)

38
See [10, Sec. 5.7] and http://en.wikipedia.org/wiki/Numerical differentiation for details.

http://en.wikipedia.org/wiki/Numerical_differentiation

Burger – Zhang’s Camera Calibration Algorithm 52

and the vector of “predicted” values (see Eqn. (197)) becomes

Y = (y0,0, . . . , y0,q−1︸ ︷︷ ︸
y0=f0(x0,p)

, y1,0, . . . , y1,q−1︸ ︷︷ ︸
y1=f1(x1,p)

, . . . , ym−1,0, . . . , ym−1,q−1︸ ︷︷ ︸
ym−1=fm−1(xm−1,p)

)
ᵀ
. (206)

The approximation error is calculated in exactly the same way as defined for
scalar-valued outputs (see Eqn. (195)), that is,

E(p) =

m−1∑
i=0

‖ẏi − yi‖
2 =

m−1∑
i=0

q−1∑
j=0

|ẏi,j − yi,j |
2 = ‖Ẏ − Y‖2 = ‖Ẏ− F (X,p)‖2.

(207)

By using a scalar-valued component function for each output dimension, map-
pings to output values of any dimensionality can be handled. The length of the
resulting data vectors is m · q (the number of observations multiplied by the
dimensionality of the output values).

Example: Assume we wish to optimize a vector-valued model transformation
f : R3 7→ R2 (i. e., p = 3, q = 2), which maps from 3D input positions xi to 2D
output values yi = (yi,x, yi,y)

ᵀ
, such that

yi = f i(xi,p) or

(
yi,x
yi,y

)
=

(
fi,x(xi,p)
fi,y(xi,p)

)
=

(
fx(xi,p)
fy(xi,p)

)
. (208)

The two scalar-valued component functions are assumed to be the same for all
samples, i. e., fi,x = fx and fi,y = fy, for all i = 0, . . . , n−1. Given m empirical

observations 〈xi,yi〉 for this mapping, with yi = (yi,x, yi,y)
ᵀ
, the resulting data

vectors could be arranged as

X=



x0

x0

x1

x1
...
xm−1
xm−1


, Ẏ=



ẏ0,x
ẏ0,y
ẏ1,x
ẏ1,y
...
ẏm−1,x
ẏm−1,y


, Y=



y0,x
y0,y
y1,x
y1,y
...
ym−1,x
ym−1,y


=



fx(x0,p)
fy(x0,p)
fx(x1,p)
fy(x1,p)
...
fx(xm−1,p)
fy(xm−1,p)


. (209)

Note that the ordering of the vector elements in Eqn. (209) is not important;
e. g., we could have arranged them equivalently in the form

X=



x0

x1
...
xm−1
x0

x1
...
xm−1


, Ẏ=



ẏ0,x
ẏ1,x
...
ẏm−1,x
ẏ0,x
ẏ1,x
...
ẏm−1,y


, Y=



y0,x
y1,x
...
ym−1,x
y0,y
y1,y
...
ym−1,y


=



fx(x0,p)
fx(x1,p)
...
fx(xm−1,p)
fy(x0,p)
fy(x1,p)
...
fy(xm−1,p)


. (210)

While only two component functions (fx, fy) were used in this example, there
could (as mentioned earlier) be a different function in each line of Eqn. (209) or
Eqn. (210).

Burger – Zhang’s Camera Calibration Algorithm 53

References

[1] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschen-
buch der Mathematik. Verlag Harri Deutsch, fifth edition, 2000.

[2] W. Burger and M. J. Burge. Digital Image Processing – An Algorithmic
Introduction Using Java. Springer, London, second edition, 2016.

[3] D. Claus and A. W. Fitzgibbon. A rational function lens distortion model
for general cameras. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 213–219, June 2005.

[4] W. W. Hager. Applied Numerical Linear Algebra. Prentice Hall, 1988.

[5] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition, 2013.

[6] R. I. Hartley. In defense of the eight-point algorithm. IEEE Trans. Pattern
Analysis and Machine Intelligence, 19(6):580–593, 1997.

[7] Intel Corporation. Open Source Computer Vision Library reference Manual,
2001. http://developer.intel.com.

[8] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill,
1995.

[9] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision:
From Images to Geometric Models. Springer, 2004.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes. Cambridge University Press, third edition, 2007.

[11] C. Tomasi. Vector representation of rotations. Computer Science 527
Course Notes, Duke University, https://www.cs.duke.edu/courses/fall13/
compsci527/notes/rodrigues.pdf, 2013.

[12] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, 1998.

[13] J. Vince. Matrix Transforms for Computer Games and Animation.
Springer, 2012.

[14] Z. Zhang. A flexible new technique for camera calibration. Technical Report
MSR-TR-98-71, Microsoft Research, 1998.

[15] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans.
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

View publication stats

http://developer.intel.com
https://www.cs.duke.edu/courses/fall13/compsci527/notes/rodrigues.pdf
https://www.cs.duke.edu/courses/fall13/compsci527/notes/rodrigues.pdf
https://www.researchgate.net/publication/303233579

	Introduction
	The perspective projection model
	The pinhole camera model
	The projection matrix
	Viewing under rigid motion
	Intrinsic camera parameters
	Lens distortion
	Where does the lens distortion come in?
	Radial distortion model

	Summary of the projection process

	Plane-based self calibration
	Calibration model and observed views
	Step 1: Estimating the homography for each view
	Homography estimation with the Direct Linear Transformation (DLT)
	Normalization of input data
	Non-linear refinement of estimated homographies

	Step 2: Determining the intrinsic camera parameters
	Step 3: Extrinsic view parameters
	Step 4: Estimating radial lens distortion
	Step 5: Refining all parameters
	Total projection error
	Parameterizing the extrinsic rotation matrices Ri
	Non-linear optimization
	Calculating the Jacobian

	Summary
	Image Rectification
	Removing lens distortion
	Simulating different camera intrinsics
	Inverting the radial distortion

	Java/ImageJ Implementation
	API description
	ImageJ Demo plugins

	3D/2D Geometry
	Homogeneous coordinates
	Rigid body transformations in 3D
	Rotations in 3D
	Translation in 3D
	Complete rigid motion
	Converting rotations

	Normalizing 2D point sets
	Extraction of camera intrinsics by Cholesky decomposition
	Calculating the focal length f
	Non-linear optimization with the Levenberg-Marquart method
	Setting up the ``model''
	Special case: single model function
	General case: multiple model functions
	The Jacobian function J()
	Calculation of partial derivatives
	Invoking the LM optimization
	Handling multi-dimensional output values

