
Chapter 2

Configuration Space

A robot is mechanically constructed by connecting a set of bodies, called links,
to each other using various types of joints. Actuators, such as electric motors,
deliver forces or torques that cause the robot’s links to move. Usually an end-
effector, such as a gripper or hand for grasping and manipulating objects, is
attached to a specific link. All the robots considered in this book have links
that can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where
is it? The answer is given by the robot’s configuration: a specification of the
positions of all points of the robot. Since the robot’s links are rigid and of a
known shape,1 only a few numbers are needed to represent its configuration.
For example, the configuration of a door can be represented by a single number,
the angle θ about its hinge. The configuration of a point on a plane can be
described by two coordinates, (x, y). The configuration of a coin lying heads
up on a flat table can be described by three coordinates: two coordinates (x, y)
that specify the location of a particular point on the coin, and one coordinate
(θ) that specifies the coin’s orientation. (See Figure 2.1).

The above coordinates all take values over a continuous range of real num-
bers. The number of degrees of freedom (dof) of a robot is the smallest
number of real-valued coordinates needed to represent its configuration. In the
example above, the door has one degree of freedom. The coin lying heads up
on a table has three degrees of freedom. Even if the coin could lie either heads
up or tails up, its configuration space still would have only three degrees of
freedom; a fourth variable, representing which side of the coin faces up, takes
values in the discrete set {heads, tails}, and not over a continuous range of real

1Compare with trying to represent the configuration of a soft object like a pillow.
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12 2.1. Degrees of Freedom of a Rigid Body
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ŷ ŷ

(x, y)

(x, y)

Figure 2.1: (a) The configuration of a door is described by the angle θ. (b) The
configuration of a point in a plane is described by coordinates (x, y). (c) The config-
uration of a coin on a table is described by (x, y, θ), where θ defines the direction in
which Abraham Lincoln is looking.

values like the other three coordinates.

Definition 2.1. The configuration of a robot is a complete specification of
the position of every point of the robot. The minimum number n of real-valued
coordinates needed to represent the configuration is the number of degrees of
freedom (dof) of the robot. The n-dimensional space containing all possible
configurations of the robot is called the configuration space (C-space). The
configuration of a robot is represented by a point in its C-space.

In this chapter we study the C-space and degrees of freedom of general
robots. Since our robots are constructed from rigid links, we examine first the
degrees of freedom of a single rigid body, and then the degrees of freedom of
general multi-link robots. Next we study the shape (or topology) and geometry
of C-spaces and their mathematical representation. The chapter concludes with
a discussion of the C-space of a robot’s end-effector, its task space. In the
following chapter we study in more detail the mathematical representation of
the C-space of a single rigid body.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points
A, B, and C on the coin (Figure 2.2(a)). Once a coordinate frame x̂–ŷ is
attached to the plane,2 the positions of these points in the plane are written

2The unit axes of coordinate frames are written with a hat, indicating they are unit vectors,
and in a non-italic font, e.g., x̂, ŷ, and ẑ.
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ŷ
dAC

dAB

dBC

ẑ
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Figure 2.2: (a) Choosing three points fixed to the coin. (b) Once the location of A is
chosen, B must lie on a circle of radius dAB centered at A. Once the location of B is
chosen, C must lie at the intersection of circles centered at A and B. Only one of these
two intersections corresponds to the “heads up” configuration. (c) The configuration
of a coin in three-dimensional space is given by the three coordinates of A, two angles
to the point B on the sphere of radius dAB centered at A, and one angle to the point
C on the circle defined by the intersection of the a sphere centered at A and a sphere
centered at B.

(xA, yA), (xB , yB), and (xC , yC). If the points could be placed independently
anywhere in the plane, the coin would have six degrees of freedom – two for each
of the three points. But, according to the definition of a rigid body, the distance
between point A and point B, denoted d(A,B), is always constant regardless of
where the coin is. Similarly, the distances d(B,C) and d(A,C) must be constant.
The following equality constraints on the coordinates (xA, yA), (xB , yB), and
(xC , yC) must therefore always be satisfied:

d(A,B) =
√

(xA − xB)2 + (yA − yB)2 = dAB ,

d(B,C) =
√

(xB − xC)2 + (yB − yC)2 = dBC ,

d(A,C) =
√

(xA − xC)2 + (yA − yC)2 = dAC .

To determine the number of degrees of freedom of the coin on the table, first
choose the position of point A in the plane (Figure 2.2(b)). We may choose it
to be anything we want, so we have two degrees of freedom to specify, namely
(xA, yA). Once (xA, yA) is specified, the constraint d(A,B) = dAB restricts the
choice of (xB , yB) to those points on the circle of radius dAB centered at A.
A point on this circle can be specified by a single parameter, e.g., the angle
specifying the location of B on the circle centered at A. Let’s call this angle

φAB and define it to be the angle that the vector
−−→
AB makes with the x̂-axis.
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14 2.1. Degrees of Freedom of a Rigid Body

Once we have chosen the location of point B, there are only two possible
locations for C: at the intersections of the circle of radius dAC centered at A
and the circle of radius dBC centered at B (Figure 2.2(b)). These two solutions
correspond to heads or tails. In other words, once we have placed A and B and
chosen heads or tails, the two constraints d(A,C) = dAC and d(B,C) = dBC
eliminate the two apparent freedoms provided by (xC , yC), and the location of
C is fixed. The coin has exactly three degrees of freedom in the plane, which
can be specified by (xA, yA, φAB).

Suppose that we choose to specify the position of an additional point D
on the coin. This introduces three additional constraints: d(A,D) = dAD,
d(B,D) = dBD, and d(C,D) = dCD. One of these constraints is redundant,
i.e., it provides no new information; only two of the three constraints are inde-
pendent. The two freedoms apparently introduced by the coordinates (xD, yD)
are then immediately eliminated by these two independent constraints. The
same would hold for any other newly chosen point on the coin, so that there is
no need to consider additional points.

We have been applying the following general rule for determining the number
of degrees of freedom of a system:

degrees of freedom = (sum of freedoms of the points) −
(number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and inde-
pendent equations that describe the system:

degrees of freedom = (number of variables) −
(number of independent equations). (2.2)

This general rule can also be used to determine the number of freedoms of
a rigid body in three dimensions. For example, assume our coin is no longer
confined to the table (Figure 2.2(c)). The coordinates for the three points A, B,
and C are now given by (xA, yA, zA), (xB , yB , zB), and (xC , yC , zC), respectively.
Point A can be placed freely (three degrees of freedom). The location of point B
is subject to the constraint d(A,B) = dAB , meaning it must lie on the sphere of
radius dAB centered at A. Thus we have 3−1 = 2 freedoms to specify, which can
be expressed as the latitude and longitude for the point on the sphere. Finally,
the location of point C must lie at the intersection of spheres centered at A and
B of radius dAC and dBC , respectively. In the general case the intersection of
two spheres is a circle, and the location of point C can be described by an angle
that parametrizes this circle. Point C therefore adds 3 − 2 = 1 freedom. Once
the position of point C is chosen, the coin is fixed in space.
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Chapter 2. Configuration Space 15

In summary, a rigid body in three-dimensional space has six freedoms, which
can be described by the three coordinates parametrizing point A, the two angles
parametrizing point B, and one angle parametrizing point C, provided A, B,
and C are noncollinear. Other representations for the configuration of a rigid
body are discussed in Chapter 3.

We have just established that a rigid body moving in three-dimensional
space, which we call a spatial rigid body, has six degrees of freedom. Similarly,
a rigid body moving in a two-dimensional plane, which we henceforth call a
planar rigid body, has three degrees of freedom. This latter result can also
be obtained by considering the planar rigid body to be a spatial rigid body with
six degrees of freedom but with the three independent constraints zA = zB =
zC = 0.

Since our robots consist of rigid bodies, Equation (2.1) can be expressed as
follows:

degrees of freedom = (sum of freedoms of the bodies) −
(number of independent constraints). (2.3)

Equation (2.3) forms the basis for determining the degrees of freedom of general
robots, which is the topic of the next section.

2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single
rigid body connected to a wall by a hinge joint. From the previous section we
know that the door has only one degree of freedom, conveniently represented
by the hinge joint angle θ. Without the hinge joint, the door would be free to
move in three-dimensional space and would have six degrees of freedom. By
connecting the door to the wall via the hinge joint, five independent constraints
are imposed on the motion of the door, leaving only one independent coordinate
(θ). Alternatively, the door can be viewed from above and regarded as a planar
body, which has three degrees of freedom. The hinge joint then imposes two
independent constraints, again leaving only one independent coordinate (θ).
The door’s C-space is represented by some range in the interval [0, 2π) over
which θ is allowed to vary.

In both cases the joints constrain the motion of the rigid body, thus re-
ducing the overall degrees of freedom. This observation suggests a formula for
determining the number of degrees of freedom of a robot, simply by counting
the number of rigid bodies and joints. In this section we derive precisely such
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16 2.2. Degrees of Freedom of a Robot

Figure 2.3: Typical robot joints.

a formula, called Grübler’s formula, for determining the number of degrees of
freedom of planar and spatial robots.

2.2.1 Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint con-
nects exactly two links; joints that simultaneously connect three or more links
are not allowed. The revolute joint (R), also called a hinge joint, allows ro-
tational motion about the joint axis. The prismatic joint (P), also called a
sliding or linear joint, allows translational (or rectilinear) motion along the di-
rection of the joint axis. The helical joint (H), also called a screw joint, allows
simultaneous rotation and translation about a screw axis. Revolute, prismatic,
and helical joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint (C)
has two degrees of freedom and allows independent translations and rotations
about a single fixed joint axis. The universal joint (U) is another two-degree-
of-freedom joint that consists of a pair of revolute joints arranged so that their
joint axes are orthogonal. The spherical joint (S), also called a ball-and-socket
joint, has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to
move relative to another. It can also be viewed as providing constraints on the
possible motions of the two rigid bodies it connects. For example, a revolute
joint can be viewed as allowing one freedom of motion between two rigid bodies
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Chapter 2. Configuration Space 17

Constraints c Constraints c
between two between two

Joint type dof f planar spatial
rigid bodies rigid bodies

Revolute (R) 1 2 5
Prismatic (P) 1 2 5

Helical (H) 1 N/A 5
Cylindrical (C) 2 N/A 4

Universal (U) 2 N/A 4
Spherical (S) 3 N/A 3

Table 2.1: The number of degrees of freedom f and constraints c provided by common
joints.

in space, or it can be viewed as providing five constraints on the motion of one
rigid body relative to the other. Generalizing, the number of degrees of freedom
of a rigid body (three for planar bodies and six for spatial bodies) minus the
number of constraints provided by a joint must equal the number of freedoms
provided by that joint.

The freedoms and constraints provided by the various joint types are sum-
marized in Table 2.1.

2.2.2 Grübler’s Formula

The number of degrees of freedom of a mechanism with links and joints can be
calculated using Grübler’s formula, which is an expression of Equation (2.3).

Proposition 2.2. Consider a mechanism consisting of N links, where ground
is also regarded as a link. Let J be the number of joints, m be the number of
degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for
spatial mechanisms), fi be the number of freedoms provided by joint i, and ci be
the number of constraints provided by joint i, where fi + ci = m for all i. Then
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18 2.2. Degrees of Freedom of a Robot

(a) (b)

Figure 2.4: (a) Four-bar linkage. (b) Slider–crank mechanism.

Grübler’s formula for the number of degrees of freedom of the robot is

dof = m(N − 1)︸ ︷︷ ︸
rigid body freedoms

−
J∑

i=1

ci

︸ ︷︷ ︸
joint constraints

= m(N − 1)−
J∑

i=1

(m− fi)

= m(N − 1− J) +

J∑

i=1

fi. (2.4)

This formula holds only if all joint constraints are independent. If they are not
independent then the formula provides a lower bound on the number of degrees
of freedom.

Below we apply Grübler’s formula to several planar and spatial mechanisms.
We distinguish between two types of mechanism: open-chain mechanisms
(also known as serial mechanisms) and closed-chain mechanisms. A
closed-chain mechanism is any mechanism that has a closed loop. A person
standing with both feet on the ground is an example of a closed-chain mech-
anism, since a closed loop can be traced from the ground, through the right
leg, through the waist, through the left leg, and back to ground (recall that the
ground itself is a link). An open-chain mechanism is any mechanism without a
closed loop; an example is your arm when your hand is allowed to move freely
in space.

Example 2.3 (Four-bar linkage and slider–crank mechanism). The planar four-
bar linkage shown in Figure 2.4(a) consists of four links (one of them ground)
arranged in a single closed loop and connected by four revolute joints. Since all
the links are confined to move in the same plane, we have m = 3. Subsituting
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Chapter 2. Configuration Space 19

(a) (b)

(c) (d)

Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c) Stephenson
six-bar linkage. (d) Watt six-bar linkage.

N = 4, J = 4, and fi = 1, i = 1, . . . , 4, into Grübler’s formula, we see that the
four-bar linkage has one degree of freedom.

The slider–crank closed-chain mechanism of Figure 2.4(b) can be analyzed in
two ways: (i) the mechanism consists of three revolute joints and one prismatic
joint (J = 4 and each fi = 1) and four links (N = 4, including the ground
link), or (ii) the mechanism consists of two revolute joints (fi = 1) and one RP
joint (the RP joint is a concatenation of a revolute and prismatic joint, so that
fi = 2) and three links (N = 3; remember that each joint connects precisely
two bodies). In both cases the mechanism has one degree of freedom.

Example 2.4 (Some classical planar mechanisms). Let us now apply Grübler’s
formula to several classical planar mechanisms. The k-link planar serial chain
of revolute joints in Figure 2.5(a) (called a kR robot for its k revolute joints)
has N = k + 1 links (k links plus ground), and J = k joints, and, since all the
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20 2.2. Degrees of Freedom of a Robot

Figure 2.6: A planar mechanism with two overlapping joints.

joints are revolute, fi = 1 for all i. Therefore,

dof = 3((k + 1)− 1− k) + k = k

as expected. For the planar five-bar linkage of Figure 2.5(b), N = 5 (four links
plus ground), J = 5, and since all joints are revolute, each fi = 1. Therefore,

dof = 3(5− 1− 5) + 5 = 2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and
fi = 1 for all i, so that

dof = 3(6− 1− 7) + 7 = 1.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
and fi = 1 for all i, so that, like the Stephenson six-bar linkage,

dof = 3(6− 1− 7) + 7 = 1.

Example 2.5 (A planar mechanism with overlapping joints). The planar mech-
anism illustrated in Figure 2.6 has three links that meet at a single point on
the right of the large link. Recalling that a joint by definition connects exactly
two links, the joint at this point of intersection should not be regarded as a
single revolute joint. Rather, it is correctly interpreted as two revolute joints
overlapping each other. Again, there is more than one way to derive the number
of degrees of freedom of this mechanism using Grübler’s formula: (i) The mech-
anism consists of eight links (N = 8), eight revolute joints, and one prismatic
joint. Substituting into Grübler’s formula yields

dof = 3(8− 1− 9) + 9(1) = 3.
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(a) (b)

Figure 2.7: (a) A parallelogram linkage. (b) The five-bar linkage in a regular and
singular configuration.

(ii) Alternatively, the lower-right revolute–prismatic joint pair can be regarded
as a single two-dof joint. In this case the number of links is N = 7, with seven
revolute joints, and a single two-dof revolute–prismatic pair. Substituting into
Grübler’s formula yields

dof = 3(7− 1− 8) + 7(1) + 1(2) = 3.

Example 2.6 (Redundant constraints and singularities). For the parallelogram
linkage of Figure 2.7(a), N = 5, J = 6, and fi = 1 for each joint. From
Grübler’s formula, the number of degrees of freedom is 3(5− 1− 6) + 6 = 0. A
mechanism with zero degrees of freedom is by definition a rigid structure. It is
clear from examining the figure, though, that the mechanism can in fact move
with one degree of freedom. Indeed, any one of the three parallel links, with
its two joints, has no effect on the motion of the mechanism, so we should have
calculated dof = 3(4− 1− 4) + 4 = 1. In other words, the constraints provided
by the joints are not independent, as required by Grübler’s formula.

A similar situation arises for the two-dof planar five-bar linkage of Fig-
ure 2.7(b). If the two joints connected to ground are locked at some fixed
angle, the five-bar linkage should then become a rigid structure. However, if the
two middle links are the same length and overlap each other, as illustrated in
Figure 2.7(b), these overlapping links can rotate freely about the two overlap-
ping joints. Of course, the link lengths of the five-bar linkage must meet certain
specifications in order for such a configuration to even be possible. Also note
that if a different pair of joints is locked in place, the mechanism does become
a rigid structure as expected.

Grübler’s formula provides a lower bound on the degrees of freedom for cases
like those just described. Configuration space singularities arising in closed
chains are discussed in Chapter 7.
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Figure 2.8: The Delta robot.

Example 2.7 (Delta robot). The Delta robot of Figure 2.8 consists of two
platforms – the lower one mobile, the upper one stationary – connected by
three legs. Each leg contains a parallelogram closed chain and consists of three
revolute joints, four spherical joints, and five links. Adding the two platforms,
there are N = 17 links and J = 21 joints (nine revolute and 12 spherical). By
Grübler’s formula,

dof = 6(17− 1− 21) + 9(1) + 12(3) = 15.

Of these 15 degrees of freedom, however, only three are visible at the end-
effector on the moving platform. In fact, the parallelogram leg design ensures
that the moving platform always remains parallel to the fixed platform, so that
the Delta robot acts as an x–y–z Cartesian positioning device. The other 12
internal degrees of freedom are accounted for by torsion of the 12 links in the
parallelograms (each of the three legs has four links in its parallelogram) about
their long axes.

Example 2.8 (Stewart–Gough platform). The Stewart–Gough platform of Fig-
ure 1.1(b) consists of two platforms – the lower one stationary and regarded as
ground, the upper one mobile – connected by six universal–prismatic–spherical
(UPS) legs. The total number of links is 14 (N = 14). There are six universal
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joints (each with two degrees of freedom, fi = 2), six prismatic joints (each with
a single degree of freedom, fi = 1), and six spherical joints (each with three de-
grees of freedom, fi = 3). The total number of joints is 18. Substituting these
values into Grübler’s formula with m = 6 yields

dof = 6(14− 1− 18) + 6(1) + 6(2) + 6(3) = 6.

In some versions of the Stewart–Gough platform the six universal joints
are replaced by spherical joints. By Grübler’s formula this mechanism has 12
degrees of freedom; replacing each universal joint by a spherical joint introduces
an extra degree of freedom in each leg, allowing torsional rotations about the
leg axis. Note, however, that this torsional rotation has no effect on the motion
of the mobile platform.

The Stewart–Gough platform is a popular choice for car and airplane cockpit
simulators, as the platform moves with the full six degrees of freedom of motion
of a rigid body. On the one hand, the parallel structure means that each leg
needs to support only a fraction of the weight of the payload. On the other
hand, this structure also limits the range of translational and rotational motion
of the platform relative to the range of motion of the end-effector of a six-dof
open chain.

2.3 Configuration Space: Topology and Represen-
tation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space
– its dimension, or the number of degrees of freedom. However, the shape of the
space is also important.

Consider a point moving on the surface of a sphere. The point’s C-space
is two dimensional, as the configuration can be described by two coordinates,
latitude and longitude. As another example, a point moving on a plane also
has a two-dimensional C-space, with coordinates (x, y). While both a plane and
the surface of a sphere are two dimensional, clearly they do not have the same
shape – the plane extends infinitely while the sphere wraps around.

Unlike the plane, a larger sphere has the same shape as the original sphere, in
that it wraps around in the same way. Only its size is different. For that matter,
an oval-shaped American football also wraps around similarly to a sphere. The
only difference between a football and a sphere is that the football has been
stretched in one direction.
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Figure 2.9: An open interval of the real line, denoted (a, b), can be deformed to an
open semicircle. This open semicircle can then be deformed to the real line by the
mapping illustrated: beginning from a point at the center of the semicircle, draw a ray
that intersects the semicircle and then a line above the semicircle. These rays show
that every point of the semicircle can be stretched to exactly one point on the line,
and vice versa. Thus an open interval can be continuously deformed to a line, so an
open interval and a line are topologically equivalent.

The idea that the two-dimensional surfaces of a small sphere, a large sphere,
and a football all have the same kind of shape, which is different from the shape
of a plane, is expressed by the topology of the surfaces. We do not attempt a
rigorous treatment in this book,3 but we say that two spaces are topologically
equivalent if one can be continuously deformed into the other without cutting
or gluing. A sphere can be deformed into a football simply by stretching, without
cutting or gluing, so those two spaces are topologically equivalent. You cannot
turn a sphere into a plane without cutting it, however, so a sphere and a plane
are not topologically equivalent.

Topologically distinct one-dimensional spaces include the circle, the line,
and a closed interval of the line. The circle is written mathematically as S or
S1, a one-dimensional “sphere.” The line can be written as E or E1, indicating
a one-dimensional Euclidean (or “flat”) space. Since a point in E1 is usually
represented by a real number (after choosing an origin and a length scale), it is
often written as R or R1 instead. A closed interval of the line, which contains its
endpoints, can be written [a, b] ⊂ R1. (An open interval (a, b) does not include
the endpoints a and b and is topologically equivalent to a line, since the open
interval can be stretched to a line, as shown in Figure 2.9. A closed interval is
not topologically equivalent to a line, since a line does not contain endpoints.)

In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the
n-dimensional surface of a sphere in (n + 1)-dimensional space. For example,
S2 is the two-dimensional surface of a sphere in three-dimensional space.

Note that the topology of a space is a fundamental property of the space
itself and is independent of how we choose coordinates to represent points in the
space. For example, to represent a point on a circle, we could refer to the point

3For those familiar with concepts in topology, all the spaces we consider can be viewed as
embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of that
space.
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by the angle θ from the center of the circle to the point, relative to a chosen
zero angle. Or, we could choose a reference frame with its origin at the center
of the circle and represent the point by the two coordinates (x, y) subject to the
constraint x2 + y2 = 1. No matter what our choice of coordinates is, the space
itself does not change.

Some C-spaces can be expressed as the Cartesian product of two or more
spaces of lower dimension; that is, points in such a C-space can be represented
as the union of the representations of points in the lower-dimensional spaces.
For example:

• The C-space of a rigid body in the plane can be written as R2 × S1,
since the configuration can be represented as the concatenation of the
coordinates (x, y) representing R2 and an angle θ representing S1.

• The C-space of a PR robot arm can be written R1 × S1. (We will occa-
sionally ignore joint limits, i.e., bounds on the travel of the joints, when
expressing the topology of the C-space; with joint limits, the C-space is
the Cartesian product of two closed intervals of the line.)

• The C-space of a 2R robot arm can be written S1×S1 = T 2, where Tn is
the n-dimensional surface of a torus in an (n+ 1)-dimensional space. (See
Table 2.2.) Note that S1 × S1 × · · · × S1 (n copies of S1) is equal to Tn,
not Sn; for example, a sphere S2 is not topologically equivalent to a torus
T 2.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot)
with a 2R robot arm can be written as R2 × S1 × T 2 = R2 × T 3.

• As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R3, plus a point on a two-dimensional sphere S2,
plus a point on a one-dimensional circle S1, giving a total C-space of
R3 × S2 × S1.

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the
space, consisting of a set of real numbers. We are familiar with this idea from
linear algebra – a vector is a natural way to represent a point in a Euclidean
space. It is important to keep in mind that the representation of a space involves
a choice, and therefore it is not as fundamental as the topology of the space,
which is independent of the representation. For example, the same point in a
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system topology sample representation

x̂

ŷ
(x, y)

point on a plane E2 R2

longitude

latitude
90◦

−90◦−180◦ 180◦

spherical pendulum S2 [−180◦, 180◦)× [−90◦, 90◦]

0
0

2π

2π θ1

θ2

2R robot arm T 2 =S1×S1 [0, 2π)× [0, 2π)

θ

x̂
0

2π
......

rotating sliding knob E1 × S1 R1 × [0, 2π)

Table 2.2: Four topologically different two-dimensional C-spaces and example co-
ordinate representations. In the latitude-longitude representation of the sphere, the
latitudes −90◦ and 90◦ each correspond to a single point (the South Pole and the North
Pole, respectively), and the longitude parameter wraps around at 180◦ and −180◦; the
edges with the arrows are glued together. Similarly, the coordinate representations of
the torus and cylinder wrap around at the edges marked with corresponding arrows.

three-dimensional space can have different coordinate representations depending
on the choice of reference frame (the origin and the direction of the coordinate
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axes) and the choice of length scale, but the topology of the underlying space is
the same regardless of theses choices.

While it is natural to choose a reference frame and length scale and to use
a vector to represent points in a Euclidean space, representing a point on a
curved space, such as a sphere, is less obvious. One solution for a sphere is to
use latitude and longitude coordinates. A choice of n coordinates, or parameters,
to represent an n-dimensional space is called an explicit parametrization of
the space. Such an explicit parametrization is valid for a particular range of
the parameters (e.g., [−90◦, 90◦] for latitude and [−180◦, 180◦) for longitude for
a sphere, where, on Earth, negative values correspond to “south” and “west,”
respectively).

The latitude–longitude representation of a sphere is unsatisfactory if you
are walking near the North Pole (where the latitude equals 90◦) or South Pole
(where the latitude equals −90◦), where taking a very small step can result in a
large change in the coordinates. The North and South Poles are singularities of
the representation, and the existence of singularities is a result of the fact that a
sphere does not have the same topology as a plane, i.e., the space of the two real
numbers that we have chosen to represent the sphere (latitude and longitude).
The location of these singularities has nothing to do with the sphere itself, which
looks the same everywhere, and everything to do with the chosen representation
of it. Singularities of the parametrization are particularly problematic when
representing velocities as the time rate of change of coordinates, since these
representations may tend to infinity near singularities even if the point on the
sphere is moving at a constant speed

√
ẋ2 + ẏ2 + ż2 (which is what the speed

would be had you represented the point as (x, y, z) instead).
If you can assume that the configuration never approaches a singularity of the

representation, you can ignore this issue. If you cannot make this assumption,
there are two ways to overcome the problem.

• Use more than one coordinate chart on the space, where each coordinate
chart is an explicit parametrization covering only a portion of the space
such that, within each chart, there is no singularity. As the configuration
representation approaches a singularity in one chart, e.g., the North or
South Pole, you simply switch to another chart where the North and
South Poles are far from singularities.

If we define a set of singularity-free coordinate charts that overlap each
other and cover the entire space, like the two charts above, the charts are
said to form an atlas of the space, much as an atlas of the Earth consists of
several maps that together cover the Earth. An advantage of using an atlas
of coordinate charts is that the representation always uses the minimum
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number of numbers. A disadvantage is the extra bookkeeping required
to switch representations between coordinate charts to avoid singularities.
(Note that Euclidean spaces can be covered by a single coordinate chart
without singularities.)

• Use an implicit representation instead of an explicit parametrization.
An implicit representation views the n-dimensional space as embedded in
a Euclidean space of more than n dimensions, just as a two-dimensional
unit sphere can be viewed as a surface embedded in a three-dimensional
Euclidean space. An implicit representation uses the coordinates of the
higher-dimensional space (e.g., (x, y, z) in the three-dimensional space),
but subjects these coordinates to constraints that reduce the number of
degrees of freedom (e.g., x2 + y2 + z2 = 1 for the unit sphere).

A disadvantage of this approach is that the representation has more num-
bers than the number of degrees of freedom. An advantage is that there are
no singularities in the representation – a point moving smoothly around
the sphere is represented by a smoothly changing (x, y, z), even at the
North and South poles. A single representation is used for the whole
sphere; multiple coordinate charts are not needed.

Another advantage is that while it may be very difficult to construct an
explicit parametrization, or atlas, for a closed-chain mechanism, it is easy
to find an implicit representation: the set of all joint coordinates subject
to the loop-closure equations that define the closed loops (Section 2.4).

We will use implicit representations throughout the book, beginning in
the next chapter. In particular, we use nine numbers, subject to six con-
straints, to represent the three orientation freedoms of a rigid body in
space. This is called a rotation matrix. In addition to being singularity-
free (unlike three-parameter representations such as roll–pitch–yaw an-
gles4), the rotation matrix representation allows us to use linear algebra
to perform computations such as rotating a rigid body or changing the
reference frame in which the orientation of a rigid body is expressed.5

In summary, the non-Euclidean shape of many C-spaces motivates our use
of implicit representations of C-space throughout this book. We return to this

4Roll–pitch–yaw angles and Euler angles use three parameters for the space of rotations
S2 × S1 (two for S2 and one for S1), and therefore are subject to singularities as discussed
above.

5Another singularity-free implicit representation of orientations, the unit quaternion, uses
only four numbers subject to the constraint that the 4-vector be of unit length. In fact, this
representation is a double covering of the set of orientations: for every orientation, there are
two unit quaternions.
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x̂

ŷ

L1

L2

L3

L4

θ1

θ2

θ3

θ4

Figure 2.10: The four-bar linkage.

topic in the next chapter.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit represen-
tation is more easily obtained than an explicit parametrization. For example,
consider the planar four-bar linkage of Figure 2.10, which has one degree of free-
dom. The fact that the four links always form a closed loop can be expressed
by the following three equations:

L1 cos θ1 + L2 cos(θ1 + θ2) + · · ·+ L4 cos(θ1 + · · ·+ θ4) = 0,

L1 sin θ1 + L2 sin(θ1 + θ2) + · · ·+ L4 sin(θ1 + · · ·+ θ4) = 0,

θ1 + θ2 + θ3 + θ4 − 2π = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain
with four revolute joints in which (i) the tip of link L4 always coincides with
the origin and (ii) the orientation of link L4 is always horizontal.

These equations are sometimes referred to as loop-closure equations. For
the four-bar linkage they are given by a set of three equations in four unknowns.
The set of all solutions forms a one-dimensional curve in the four-dimensional
joint space and constitutes the C-space.
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In this book, when vectors are used in a linear algebra computation,
they are treated as column vectors, e.g., p = [1 2 3]T. When a computation
is not imminent, however, we often think of a vector simply as an ordered
list of variables, e.g., p = (1, 2, 3).

Thus, for general robots containing one or more closed loops, the configura-
tion space can be implicitly represented by the column vector θ = [θ1 · · · θn]T ∈
Rn and loop-closure equations of the form

g(θ) =



g1(θ1, . . . , θn)

...
gk(θ1, . . . , θn)


 = 0, (2.5)

a set of k independent equations, with k ≤ n. Such constraints are known
as holonomic constraints, ones that reduce the dimension of the C-space.6

The C-space can be viewed as a surface of dimension n − k (assuming that all
constraints are independent) embedded in Rn.

Suppose that a closed-chain robot with loop-closure equations g(θ) = 0,
g : Rn → Rk, is in motion, following the time trajectory θ(t). Differentiating
both sides of g(θ(t)) = 0 with respect to t, we obtain

d

dt
g(θ(t)) = 0;

(2.6)

thus



∂g1

∂θ1
(θ)θ̇1 + · · ·+ ∂g1

∂θn
(θ)θ̇n

...
∂gk
∂θ1

(θ)θ̇1 + · · ·+ ∂gk
∂θn

(θ)θ̇n




= 0.

This can be expressed as a matrix multiplying a column vector [θ̇1 · · · θ̇n]T:



∂g1

∂θ1
(θ) · · · ∂g1

∂θn
(θ)

...
. . .

...
∂gk
∂θ1

(θ) · · · ∂gk
∂θn

(θ)






θ̇1

...

θ̇n


 = 0,

6Viewing a rigid body as a collection of points, the distance constraints between the points,
as we saw earlier, can be viewed as holonomic constraints.
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x̂

ŷ

ẑ

(x, y)
φ

θ

Figure 2.11: A coin rolling on a plane without slipping.

which we can write as

∂g

∂θ
(θ)θ̇ = 0. (2.7)

Here, the joint-velocity vector θ̇i denotes the derivative of θi with respect to
time t, ∂g(θ)/∂θ ∈ Rk×n, and θ, θ̇ ∈ Rn. The constraints (2.7) can be written

A(θ)θ̇ = 0, (2.8)

where A(θ) ∈ Rk×n. Velocity constraints of this form are called Pfaffian con-
straints. For the case of A(θ) = ∂g(θ)/∂θ, one could regard g(θ) as being the
“integral” of A(θ); for this reason, holonomic constraints of the form g(θ) = 0
are also called integrable constraints – the velocity constraints that they
imply can be integrated to give equivalent configuration constraints.

We now consider another class of Pfaffian constraints that is fundamentally
different from the holonomic type. To illustrate this with a concrete example,
consider an upright coin of radius r rolling on a plane as shown in Figure 2.11.
The configuration of the coin is given by the contact point (x, y) on the plane,
the steering angle φ, and the angle of rotation θ. The C-space of the coin is
therefore R2 × T 2, where T 2 is the two-dimensional torus parametrized by the
angles φ and θ. This C-space is four dimensional.

We now express, in mathematical form, the fact that the coin rolls without
slipping. The coin must always roll in the direction indicated by (cosφ, sinφ),
with forward speed rθ̇: [

ẋ
ẏ

]
= rθ̇

[
cosφ
sinφ

]
. (2.9)
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Collecting the four C-space coordinates into a single vector q = [q1 q2 q3 q4]T =
[x y φ θ]T ∈ R2×T 2, the above no-slip rolling constraint can then be expressed
in the form [

1 0 0 −r cos q3

0 1 0 −r sin q3

]
q̇ = 0. (2.10)

These are Pfaffian constraints of the form A(q)q̇ = 0, A(q) ∈ R2×4.
These constraints are not integrable; that is, for the A(q) given in (2.10),

there does not exist a differentiable function g : R4 → R2 such that ∂g(q)/∂q =
A(q). If this were not the case then there would have to exist a differentiable
g1(q) that satisfied the following four equalities:

∂g1/∂q1 = 1 −→ g1(q) = q1 + h1(q2, q3, q4)
∂g1/∂q2 = 0 −→ g1(q) = h2(q1, q3, q4)
∂g1/∂q3 = 0 −→ g1(q) = h3(q1, q2, q4)
∂g1/∂q4 = −r cos q3 −→ g1(q) = −rq4 cos q3 + h4(q1, q2, q3),

for some hi, i = 1, . . . , 4, differentiable in each of its variables. By inspection
it should be clear that no such g1(q) exists. Similarly, it can be shown that
g2(q) does not exist, so that the constraint (2.10) is nonintegrable. A Pfaffian
constraint that is nonintegrable is called a nonholonomic constraint. Such
constraints reduce the dimension of the feasible velocities of the system but
do not reduce the dimension of the reachable C-space. The rolling coin can
reach any point in its four-dimensional C-space despite the two constraints on
its velocity.7 See Exercise 2.30.

In a number of robotics contexts nonholonomic constraints arise that involve
the conservation of momentum and rolling without slipping, e.g., wheeled vehicle
kinematics and grasp contact kinematics. We examine nonholonomic constraints
in greater detail in our study of wheeled mobile robots in Chapter 13.

2.5 Task Space and Workspace

We now introduce two more concepts relating to the configuration of a robot:
the task space and the workspace. Both relate to the configuration of the end-
effector of a robot, not to the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally ex-
pressed. For example, if the robot’s task is to plot with a pen on a piece of paper,
the task space would be R2. If the task is to manipulate a rigid body, a natural

7Some texts define the number of degrees of freedom of a system to be the dimension of
the feasible velocities, e.g., two for the rolling coin. We always refer to the dimension of the
C-space as the number of degrees of freedom.
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θ1

θ2

θ3

(a) (b)

(c) (d)

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting
mechanism.

representation of the task space is the C-space of a rigid body, representing the
position and orientation of a frame attached to the robot’s end-effector. This is
the default representation of task space. The decision of how to define the task
space is driven by the task, independently of the robot.

The workspace is a specification of the configurations that the end-effector
of the robot can reach. The definition of the workspace is primarily driven by
the robot’s structure, independently of the task.

Both the task space and the workspace involve a choice by the user; in
particular, the user may decide that some freedoms of the end-effector (e.g., its
orientation) do not need to be represented.
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The task space and the workspace are distinct from the robot’s C-space. A
point in the task space or the workspace may be achievable by more than one
robot configuration, meaning that the point is not a full specification of the
robot’s configuration. For example, for an open-chain robot with seven joints,
the six-dof position and orientation of its end-effector does not fully specify the
robot’s configuration.

Some points in the task space may not be reachable at all by the robot,
such as some points on a chalkboard. By definition, however, all points in the
workspace are reachable by at least one configuration of the robot.

Two mechanisms with different C-spaces may have the same workspace. For
example, considering the end-effector to be the Cartesian tip of the robot (e.g.,
the location of a plotting pen) and ignoring orientations, the planar 2R open
chain with links of equal length three (Figure 2.12(a)) and the planar 3R open
chain with links of equal length two (Figure 2.12(b)) have the same workspace
despite having different C-spaces.

Two mechanisms with the same C-space may also have different workspaces.
For example, taking the end-effector to be the Cartesian tip of the robot and
ignoring orientations, the 2R open chain of Figure 2.12(a) has a planar disk as
its workspace, while the 2R open chain of Figure 2.12(c) has the surface of a
sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open-chain
“wrist” mechanism of Figure 2.12(d), we see that the frame can achieve any
orientation by rotating the joints but the Cartesian position of the tip is always
fixed. This can be seen by noting that the three joint axes always intersect at
the tip. For this mechanism, we would probably define the workspace to be the
three-dof space of orientations of the frame, S2×S1, which is different from the
C-space T 3. The task space depends on the task; if the job is to point a laser
pointer, then rotations about the axis of the laser beam are immaterial and the
task space would be S2, the set of directions in which the laser can point.

Example 2.9. The SCARA robot of Figure 2.13 is an RRRP open chain that is
widely used for tabletop pick-and-place tasks. The end-effector configuration is
completely described by the four parameters (x, y, z, φ), where (x, y, z) denotes
the Cartesian position of the end-effector center point and φ denotes the ori-
entation of the end-effector in the x–y-plane. Its task space would typically be
defined as R3×S1, and its workspace would typically be defined as the reachable
points in (x, y, z) Cartesian space, since all orientations φ ∈ S1 can be achieved
at all reachable points.

Example 2.10. A standard 6R industrial manipulator can be adapted to spray-
painting applications as shown in Figure 2.14. The paint spray nozzle attached
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x̂

ŷ
ẑ

(x, y, z)

φ

θ1

θ2

θ3

θ4

Figure 2.13: SCARA robot.

Figure 2.14: A spray-painting robot.
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to the tip can be regarded as the end-effector. What is important to the task
is the Cartesian position of the spray nozzle, together with the direction in
which the spray nozzle is pointing; rotations about the nozzle axis (which points
in the direction in which paint is being sprayed) do not matter. The nozzle
configuration can therefore be described by five coordinates: (x, y, z) for the
Cartesian position of the nozzle and spherical coordinates (θ, φ) to describe
the direction in which the nozzle is pointing. The task space can be written
as R3 × S2. The workspace could be the reachable points in R3 × S2, or, to
simplify visualization, the user could define the workspace to be the subset of
R3 corresponding to the reachable Cartesian positions of the nozzle.

2.6 Summary

• A robot is mechanically constructed from links that are connected by
various types of joint. The links are usually modeled as rigid bodies. An
end-effector such as a gripper may be attached to some link of the robot.
Actuators deliver forces and torques to the joints, thereby causing motion
of the robot.

• The most widely used one-dof joints are the revolute joint, which allows
rotation about the joint axis, and the prismatic joint, which allows trans-
lation in the direction of the joint axis. Some common two-dof joints
include the cylindrical joint, which is constructed by serially connecting a
revolute and prismatic joint, and the universal joint, which is constructed
by orthogonally connecting two revolute joints. The spherical joint, also
known as the ball-and-socket joint, is a three-dof joint whose function is
similar to the human shoulder joint.

• The configuration of a rigid body is a specification of the location of all its
points. For a rigid body moving in the plane, three independent parame-
ters are needed to specify the configuration. For a rigid body moving in
three-dimensional space, six independent parameters are needed to specify
the configuration.

• The configuration of a robot is a specification of the configuration of all
its links. The robot’s configuration space is the set of all possible robot
configurations. The dimension of the C-space is the number of degrees of
freedom of a robot.

• The number of degrees of freedom of a robot can be calculated using
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Grübler’s formula,

dof = m(N − 1− J) +
J∑

i=1

fi,

where m = 3 for planar mechanisms and m = 6 for spatial mechanisms, N
is the number of links (including the ground link), J is the number of joints,
and fi is the number of degrees of freedom of joint i. If the constraints
enforced by the joints are not independent then Grübler’s formula provides
a lower bound on the number of degrees of freedom.

• A robot’s C-space can be parametrized explicitly or represented implicitly.
For a robot with n degrees of freedom, an explicit parametrization uses n
coordinates, the minimum necessary. An implicit representation involves
m coordinates with m ≥ n, with the m coordinates subject to m − n
constraint equations. With an implicit parametrization, a robot’s C-space
can be viewed as a surface of dimension n embedded in a space of higher
dimension m.

• The C-space of an n-dof robot whose structure contains one or more closed
loops can be implicitly represented using k loop-closure equations of the
form g(θ) = 0, where θ ∈ Rm and g : Rm → Rk. Such constraint equations
are called holonomic constraints. Assuming that θ varies with time t, the
holonomic constraints g(θ(t)) = 0 can be differentiated with respect to t
to yield

∂g

∂θ
(θ)θ̇ = 0,

where ∂g(θ)/∂θ is a k ×m matrix.

• A robot’s motion can also be subject to velocity constraints of the form

A(θ)θ̇ = 0,

where A(θ) is a k×m matrix that cannot be expressed as the differential
of some function g(θ). In other words, there does not exist any g(θ), g :
Rm → Rk, such that

A(θ) =
∂g

∂θ
(θ).

Such constraints are said to be nonholonomic constraints, or nonintegrable
constraints. These constraints reduce the dimension of feasible velocities
of the system but do not reduce the dimension of the reachable C-space.
Nonholonomic constraints arise in robot systems subject to conservation
of momentum or rolling without slipping.
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• A robot’s task space is a space in which the robot’s task can be naturally
expressed. A robot’s workspace is a specification of the configurations
that the end-effector of the robot can reach.

2.7 Notes and References

In the kinematics literature, structures that consist of links connected by joints
are also called mechanisms or linkages. The number of degrees of freedom of a
mechanism, also referred to as its mobility, is treated in most texts on mecha-
nism analysis and design, e.g., [43, 114]. The notion of a robot’s configuration
space was first formulated in the context of motion planning by Lozano-Perez
[95]; more recent and advanced treatments can be found in [80, 83, 27]. As
apparent from some of the examples in this chapter, a robot’s configuration
space can be nonlinear and curved, as can its task space. Such spaces often
have the mathematical structure of a differentiable manifold, which are the cen-
tral objects of study in differential geometry. Some accessible introductions to
differential geometry are [119, 38, 17].

2.8 Exercises

In the exercises below, if you are asked to “describe” a C-space, you should
indicate its dimension and whatever you know about its topology (e.g., using
R, S, and T , as with the examples in Sections 2.3.1 and 2.3.2).

Exercise 2.1 Using the methods of Section 2.1 derive a formula, in terms of
n, for the number of degrees of freedom of a rigid body in n-dimensional space.
Indicate how many of these dof are translational and how many are rotational.
Describe the topology of the C-space (e.g., for n = 2, the topology is R2 × S1).

Exercise 2.2 Find the number of degrees of freedom of your arm, from your
torso to your palm (just past the wrist, not including finger degrees of freedom).
Keep the center of the ball-and-socket joint of your shoulder stationary (do not
“hunch” your shoulders). Find the number of degrees of freedom in two ways:

(a) add up the degrees of freedom at the shoulder, elbow, and wrist joints;
(b) fix your palm flat on a table with your elbow bent and, without moving

the center of your shoulder joint, investigate with how many degrees of
freedom you can still move your arm.
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Human

Robot

A

Figure 2.15: Robot used for human arm rehabilitation.

Do your answers agree? How many constraints were placed on your arm when
you placed your palm at a fixed configuration on the table?

Exercise 2.3 In the previous exercise, we assumed that your arm is a serial
chain. In fact, between your upper arm bone (the humerus) and the bone
complex just past your wrist (the carpal bones), your forearm has two bones,
the radius and the ulna, which are part of a closed chain. Model your arm,
from your shoulder to your palm, as a mechanism with joints and calculate the
number of degrees of freedom using Grübler’s formula. Be clear on the number
of freedoms of each joint you use in your model. Your joints may or may not be
of the standard types studied in this chapter (R, P, H, C, U, and S).

Exercise 2.4 Assume each of your arms has n degrees of freedom. You are
driving a car, your torso is stationary relative to the car (owing to a tight
seatbelt!), and both hands are firmly grasping the wheel, so that your hands
do not move relative to the wheel. How many degrees of freedom does your
arms-plus-steering wheel system have? Explain your answer.

Exercise 2.5 Figure 2.15 shows a robot used for human arm rehabilitation.
Determine the number of degrees of freedom of the chain formed by the human
arm and the robot

Exercise 2.6 The mobile manipulator of Figure 2.16 consists of a 6R arm and
multi-fingered hand mounted on a mobile base with a single wheel. You can
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Figure 2.16: Mobile manipulator.

think of the wheeled base as the same as the rolling coin in Figure 2.11 – the
wheel (and base) can spin together about an axis perpendicular to the ground,
and the wheel rolls without slipping. The base always remains horizontal. (Left
unstated are the means to keep the base horizontal and to spin the wheel and
base about an axis perpendicular to the ground.)

(a) Ignoring the multi-fingered hand, describe the configuration space of the
mobile manipulator.

(b) Now suppose that the robot hand rigidly grasps a refrigerator door handle
and, with its wheel and base completely stationary, opens the door using
only its arm. With the door open, how many degrees of freedom does the
mechanism formed by the arm and open door have?

(c) A second identical mobile manipulator comes along, and after parking its
mobile base, also rigidly grasps the refrigerator door handle. How many
degrees of freedom does the mechanism formed by the two arms and the
open refrigerator door have?

Exercise 2.7 Three identical SRS open-chain arms are grasping a common
object, as shown in Figure 2.17.

(a) Find the number of degrees of freedom of this system.
(b) Suppose there are now a total of n such arms grasping the object. How

many degrees of freedom does this system have?
(c) Suppose the spherical wrist joint in each of the n arms is now replaced by
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Spherical Joint

Revolute Joint

spherical joint

revolute joint

Figure 2.17: Three cooperating SRS arms grasping a common object.

a universal joint. How many degrees of freedom does this system have?

Exercise 2.8 Consider a spatial parallel mechanism consisting of a moving
plate connected to a fixed plate by n identical legs. For the moving plate to
have six degrees of freedom, how many degrees of freedom should each leg have,
as a function of n? For example, if n = 3 then the moving plate and fixed plate
are connected by three legs; how many degrees of freedom should each leg have
for the moving plate to move with six degrees of freedom? Solve for arbitrary
n.

Exercise 2.9 Use the planar version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.18. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.10 Use the planar version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.19. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.11 Use the spatial version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.20. Comment
on whether your results agree with your intuition about the possible motions of
these mechanisms.

Exercise 2.12 Use the spatial version of Grübler’s formula to determine the
number of degrees of freedom of the mechanisms shown in Figure 2.21. Comment
on whether your results agree with your intuition about the possible motions of
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(a) (b)

Fork Joint

Slider

Slider

(c) (d)

(e) (f)

Figure 2.18: A first collection of planar mechanisms.

these mechanisms.

Exercise 2.13 In the parallel mechanism shown in Figure 2.22, six legs of
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(a) (b)

(c) (d)

Figure 2.19: A second collection of planar mechanisms.

identical length are connected to a fixed and moving platform via spherical
joints. Determine the number of degrees of freedom of this mechanism using
Grübler’s formula. Illustrate all possible motions of the upper platform.

Exercise 2.14 The 3×UPU platform of Figure 2.23 consists of two platforms–
the lower one stationary, the upper one mobile–connected by three UPU legs.

(a) Using the spatial version of Grübler’s formula, verify that it has three
degrees of freedom.

(b) Construct a physical model of the 3×UPU platform to see if it indeed has
three degrees of freedom. In particular, lock the three P joints in place;
does the robot become a rigid structure as predicted by Grübler’s formula,
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(a)

Circular P Joint

R Joint
P JointS Joint

(b)

Circular
P Joint

S Joint

(c)

Universal Joint

(d)

(e)

S Joint

(f)

Figure 2.20: A first collection of spatial parallel mechanisms.
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(a) (b)

R

U

S

(c)

R

RR

RR

R

P

(d)

Figure 2.21: A second collection of spatial parallel mechanisms.

or does it move?

Exercise 2.15 The mechanisms of Figures 2.24(a) and 2.24(b).
(a) The mechanism of Figure 2.24(a) consists of six identical squares arranged

in a single closed loop, connected by revolute joints. The bottom square
is fixed to ground. Determine the number of degrees of freedom using
Grübler’s formula.

(b) The mechanism of Figure 2.24(b) also consists of six identical squares
connected by revolute joints, but arranged differently (as shown). Deter-
mine the number of degrees of freedom using Grübler’s formula. Does
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Figure 2.22: A 6×SS platform.

Figure 2.23: The 3×UPU platform.
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R
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(a)

stationary

R

R

R

R

R

R

(b)

Figure 2.24: Two mechanisms.

your result agree with your intuition about the possible motions of this
mechanism?

Exercise 2.16 Figure 2.25 shows a spherical four-bar linkage, in which four
links (one of the links is the ground link) are connected by four revolute joints
to form a single-loop closed chain. The four revolute joints are arranged so that
they lie on a sphere such that their joint axes intersect at a common point.

(a) Use Grübler’s formula to find the number of degrees of freedom. Justify
your choice of formula.

(b) Describe the configuration space.
(c) Assuming that a reference frame is attached to the center link, describe

its workspace.

Exercise 2.17 Figure 2.26 shows a parallel robot used for surgical applications.
As shown in Figure 2.26(a), leg A is an RRRP chain, while legs B and C are
RRRUR chains. A surgical tool is rigidly attached to the end-effector.

(a) Use Grübler’s formula to find the number of degrees of freedom of the
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Figure 2.25: The spherical four-bar linkage.

Leg A

Leg B

Leg C

Point A

Base

Surgical tool

End-effector

(a)

Leg D

Leg D

Leg D

Point A

Base

Surgical tool

End-effector

(b)

Figure 2.26: Surgical manipulator.

mechanism in Figure 2.26(a).
(b) Now suppose that the surgical tool must always pass through point A in

Figure 2.26(a). How many degrees of freedom does the manipulator have?
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P

U

P

platform

base

Figure 2.27: The 3×PUP platform.

(c) Legs A, B, and C are now replaced by three identical RRRR legs as shown
in Figure 2.26(b). Furthermore, the axes of all R joints pass through point
A. Use Grübler’s formula to derive the number of degrees of freedom of
this mechanism.

Exercise 2.18 Figure 2.27 shows a 3×PUP platform, in which three identical
PUP legs connect a fixed base to a moving platform. The P joints on both
the fixed base and moving platform are arranged symmetrically. Use Grübler’s
formula to find the number of degrees of freedom. Does your answer agree with
your intuition about this mechanism? If not, try to explain any discrepancies
without resorting to a detailed kinematic analysis.

Exercise 2.19 The dual-arm robot of Figure 2.28 is rigidly grasping a box.
The box can only slide on the table; the bottom face of the box must always be
in contact with the table. How many degrees of freedom does this system have?

Exercise 2.20 The dragonfly robot of Figure 2.29 has a body, four legs, and
four wings as shown. Each leg is connected to each adjacent leg by a USP
linkage. Use Grübler’s formula to answer the following questions.

(a) Suppose the body is fixed and only the legs and wings can move. How
many degrees of freedom does the robot have?

(b) Now suppose the robot is flying in the air. How many degrees of freedom
does the robot have?

(c) Now suppose the robot is standing with all four feet in contact with the
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S
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R R

R

Figure 2.28: Dual-arm robot.

P

S

U

P

S

R

Figure 2.29: Dragonfly robot.

ground. Assume that the ground is uneven and that each foot–ground
contact can be modeled as a point contact with no slip. How many degrees
of freedom does the robot have? Explain your answer.
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R

R

RPR

(a) (b)

Contact

(c)

Figure 2.30: A caterpillar robot.

Exercise 2.21 A caterpillar robot.
(a) A caterpillar robot is hanging by its tail end as shown in Figure 2.30(a).

The robot consists of eight serially connected rigid links (one head, one
tail, and six body links). The six body links are connected by revolute–
prismatic–revolute joints, while the head and tail are connected to the
body by revolute joints. Find the number of degrees of freedom of this
robot.

(b) The caterpillar robot is now crawling on a leaf as shown in Figure 2.30(b).
Suppose that all six body links must make contact with the leaf at all
times but the links can slide and rotate on the leaf. Find the number of
degrees of freedom of this robot during crawling.

(c) Now suppose the caterpillar robot crawls on the leaf as shown in Fig-
ure 2.30(c), with only the first and last body links in contact with the
leaf. Find the number of degrees of freedom of this robot during crawling.

Exercise 2.22 The four-fingered hand of Figure 2.31(a) consists of a palm
and four URR fingers (the U joints connect the fingers to the palm).

(a) Assume that the fingertips are points and that one fingertip is in contact
with the table surface (sliding of the fingertip point-contact is allowed).
How many degrees of freedom does the hand have? What if two fingertips
are in sliding point contact with the table? Three? All four?

(b) Repeat part (a) but with each URR finger replaced by an SRR finger (each
universal joint is replaced by a spherical joint).

(c) The hand (with URR fingers) now grasps an ellipsoidal object, as shown
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U

R

R

(a)     (b)      (c)

Figure 2.31: (a) A four-fingered hand with palm. (b) The hand grasping an ellip-
soidal object. (c) A rounded fingertip that can roll on the object without sliding.

in Figure 2.31(b). Assume that the palm is fixed in space and that no slip
occurs between the fingertips and object. How many degrees of freedom
does the system have?

(d) Now assume that the fingertips are hemispheres as shown in Figure 2.31(c).
Each fingertip can roll on the object but cannot slip or break contact with
the object. How many degrees of freedom does the system have? For a
single fingertip in rolling contact with the object, comment on the dimen-
sion of the space of feasible fingertip velocities relative to the object versus
the number of parameters needed to represent the fingertip configuration
relative to the object (the number of degrees of freedom). (Hint: You may
want to experiment by rolling a ball around on a tabletop to get some
intuition.)

Exercise 2.23 Consider the slider–crank mechanism of Figure 2.4(b). A ro-
tational motion at the revolute joint fixed to ground (the “crank”) causes a
translational motion at the prismatic joint (the “slider”). Suppose that the two
links connected to the crank and slider are of equal length. Determine the con-
figuration space of this mechanism, and draw its projected version on the space
defined by the crank and slider joint variables.

Exercise 2.24 The planar four-bar linkage.
(a) Use Grübler’s formula to determine the number of degrees of freedom of

a planar four-bar linkage floating in space.
(b) Derive an implicit parametrization of the four-bar’s configuration space as

follows. First, label the four links 1, 2, 3, and 4, and choose three points
A,B,C on link 1, D,E, F on link 2, G,H, I on link 3, and J,K,L on link
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ŷ
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Figure 2.32: Planar four-bar linkage.

4. The four-bar linkage is constructed in such a way that the following
four pairs of points are each connected by a revolute joint: C with D,
F with G, I with J , and L with A. Write down explicit constraints
on the coordinates for the eight points A, . . . ,H (assume that a fixed
reference frame has been chosen, and denote the coordinates for point
A by pA = (xA, yA, zA), and similarly for the other points). Based on
counting the number of variables and constraints, how many degrees of
freedom does the configuration space have? If it differs from the result
you obtained in (a), try to explain why.

Exercise 2.25 In this exercise we examine in more detail the representation
of the C-space for the planar four-bar linkage of Figure 2.32. Attach a fixed
reference frame and label the joints and link lengths as shown in the figure. The
(x, y) coordinates for joints A and B are given by

A(θ) = (a cos θ, a sin θ),

B(ψ) = (g + b cosψ, b sinψ).

Using the fact that the link connecting A and B is of fixed length h, i.e., ‖A(θ)−
B(ψ)‖2 = h2, we have the constraint

b2 + g2 + 2gb cosψ + a2 − 2(a cos θ(g + b cosψ) + ab sin θ sinψ) = h2.

Grouping the coefficients of cosψ and sinψ, the above equation can be expressed
in the form

α(θ) cosψ + β(θ) sinψ = γ(θ), (2.11)
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where

α(θ) = 2gb− 2ab cos θ,

β(θ) = −2ab sin θ,

γ(θ) = h2 − g2 − b2 − a2 + 2ag cos θ.

We now express ψ as a function of θ, by first dividing both sides of Equa-
tion (2.11) by

√
α2 + β2 to obtain

α√
α2 + β2

cosψ +
β√

α2 + β2
sinψ =

γ√
α2 + β2

. (2.12)

Referring to Figure 2.32(b), the angle φ is given by φ = tan−1(β/α), so that
Equation (2.12) becomes

cos(ψ − φ) =
γ√

α2 + β2
.

Therefore

ψ = tan−1

(
β

α

)
± cos−1

(
γ√

α2 + β2

)
.

(a) Note that a solution exists only if γ2 ≤ α2 + β2. What are the physical
implications if this constraint is not satisfied?

(b) Note that, for each value of the input angle θ, there exist two possible
values of the output angle ψ. What do these two solutions look like?

(c) Draw the configuration space of the mechanism in θ–ψ space for the fol-
lowing link length values: a = b = g = h = 1.

(d) Repeat (c) for the following link length values: a = 1, b = 2, h =
√

5,
g = 2.

(e) Repeat (c) for the following link length values: a = 1, b = 1, h = 1,
g =
√

3.

Exercise 2.26 The tip coordinates for the two-link planar 2R robot of Fig-
ure 2.33 are given by

x = 2 cos θ1 + cos(θ1 + θ2)

y = 2 sin θ1 + sin(θ1 + θ2).

(a) What is the robot’s configuration space?
(b) What is the robot’s workspace (i.e., the set of all points reachable by the

tip)?
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θ1

θ2

(x, y)

Figure 2.33: Two-link planar 2R open chain.

(c) Suppose infinitely long vertical barriers are placed at x = 1 and x = −1.
What is the free C-space of the robot (i.e., the portion of the C-space that
does not result in any collisions with the vertical barriers)?

Exercise 2.27 The workspace of a planar 3R open chain.
(a) Consider a planar 3R open chain with link lengths (starting from the fixed

base joint) 5, 2, and 1, respectively. Considering only the Cartesian point
of the tip, draw its workspace.

(b) Now consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian
point of the tip, draw its workspace. Which of these two chains has a
larger workspace?

(c) A not-so-clever designer claims that he can make the workspace of any
planar open chain larger simply by increasing the length of the last link.
Explain the fallacy behind this claim.

Exercise 2.28 Task space.
(a) Describe the task space for a robot arm writing on a blackboard.
(b) Describe the task space for a robot arm twirling a baton.

Exercise 2.29 Give a mathematical description of the topologies of the C-
spaces of the following systems. Use cross products, as appropriate, of spaces
such as a closed interval [a, b] of a line and Rk, Sm, and Tn, where k, m, and n
are chosen appropriately.

(a) The chassis of a car-like mobile robot rolling on an infinite plane.
(b) The car-like mobile robot (chassis only) driving around on a spherical

asteroid.
(c) The car-like mobile robot (chassis only) on an infinite plane with an RRPR

robot arm mounted on it. The prismatic joint has joint limits, but the
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Side view                                 Top view

r θ
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Figure 2.34: A side view and a top view of a diff-drive robot.

revolute joints do not.
(d) A free-flying spacecraft with a 6R arm mounted on it and no joint limits.

Exercise 2.30 Describe an algorithm that drives the rolling coin of Figure 2.11
from any arbitrary initial configuration in its four-dimensional C-space to any
arbitrary goal configuration, despite the two nonholonomic constraints. The
control inputs are the rolling speed θ̇ and the turning speed φ̇. You should
explain clearly in words or pseudocode how the algorithm would work. It is not
necessary to give actual code or formulas.

Exercise 2.31 A differential-drive mobile robot has two wheels that do not
steer but whose speeds can be controlled independently. The robot goes forward
and backward by spinning the wheels in the same direction at the same speed,
and it turns by spinning the wheels at different speeds. The configuration of the
robot is given by five variables: the (x, y) location of the point halfway between
the wheels, the heading direction θ of the robot’s chassis relative to the x-axis of
the world frame, and the rotation angles φ1 and φ2 of the two wheels about the
axis through the centers of the wheels (Figure 2.34). Assume that the radius of
each wheel is r and the distance between the wheels is 2d.

(a) Let q = (x, y, θ, φ1, φ2) be the configuration of the robot. If the two control
inputs are the angular velocities of the wheels ω1 = φ̇1 and ω2 = φ̇2, write
down the vector differential equation q̇ = g1(q)ω1 + g2(q)ω2. The vector
fields g1(q) and g2(q) are called control vector fields (see Section 13.3) and
express how the system moves when the respective unit control signal is
applied.

(b) Write the corresponding Pfaffian constraints A(q)q̇ = 0 for this system.
How many Pfaffian constraints are there?

(c) Are the constraints holonomic or nonholonomic? Or how many are holo-
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nomic and how many nonholonomic?

Exercise 2.32 Determine whether the following differential constraints are
holonomic or nonholonomic:

(a)
(1 + cos q1)q̇1 + (1 + cos q2)q̇2 + (cos q1 + cos q2 + 4)q̇3 = 0.

(b)

−q̇1 cos q2 + q̇3 sin(q1 + q2)− q̇4 cos(q1 + q2) = 0

q̇3 sin q1 − q̇4 cos q1 = 0.
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