
Chapter 3

Rigid-Body Motions

In the previous chapter, we saw that a minimum of six numbers is needed
to specify the position and orientation of a rigid body in three-dimensional
physical space. In this chapter we develop a systematic way to describe a rigid
body’s position and orientation which relies on attaching a reference frame to
the body. The configuration of this frame with respect to a fixed reference frame
is then represented as a 4× 4 matrix. This matrix is an example of an implicit
representation of the C-space, as discussed in the previous chapter: the actual
six-dimensional space of rigid-body configurations is obtained by applying ten
constraints to the 16-dimensional space of 4× 4 real matrices.

Such a matrix not only represents the configuration of a frame, but can also
be used to (1) translate and rotate a vector or a frame, and (2) change the rep-
resentation of a vector or a frame from coordinates in one frame to coordinates
in another frame. These operations can be performed by simple linear algebra,
which is a major reason why we choose to represent a configuration as a 4 × 4
matrix.

The non-Euclidean (i.e., non-“flat”) nature of the C-space of positions and
orientations leads us to use a matrix representation. A rigid body’s velocity,
however, can be represented simply as a point in R6, defined by three angular
velocities and three linear velocities, which together we call a spatial velocity
or twist. More generally, even though a robot’s C-space may not be a vector
space, the set of feasible velocities at any point in the C-space always forms
a vector space. For example, consider a robot whose C-space is the sphere
S2: although the C-space is not flat, at any point on the sphere the space of
velocities can be thought of as the plane (a vector space) tangent to that point
on the sphere.
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Any rigid-body configuration can be achieved by starting from the fixed
(home) reference frame and integrating a constant twist for a specified time.
Such a motion resembles the motion of a screw, rotating about and translat-
ing along the same fixed axis. The observation that all configurations can be
achieved by a screw motion motivates a six-parameter representation of the
configuration called the exponential coordinates. The six parameters can
be divided into the parameters describing the direction of the screw axis and
a scalar to indicate how far the screw motion must be followed to achieve the
desired configuration.

This chapter concludes with a discussion of forces. Just as angular and linear
velocities are packaged together into a single vector in R6, moments (torques)
and forces are packaged together into a six-vector called a spatial force or
wrench.

To illustrate the concepts and to provide a synopsis of the chapter, we begin
with a motivating planar example. Before doing so, we make some remarks
about vector notation.

A Word about Vectors and Reference Frames

A free vector is a geometric quantity with a length and a direction. Think
of it as an arrow in Rn. It is called “free” because it is not necessarily rooted
anywhere; only its length and direction matter. A linear velocity can be viewed
as a free vector: the length of the arrow is the speed and the direction of the
arrow is the direction of the velocity. A free vector is denoted by an upright
text symbol, e.g., v.

If a reference frame and length scale have been chosen for the underlying
space in which v lies then this free vector can be moved to a position such that
the base of the arrow is at the origin without changing the orientation. The
free vector v can then be represented by its coordinates in the reference frame.
We write the vector in italics, v ∈ Rn, where v is at the “head” of the arrow
in the frame’s coordinates. If a different reference frame and length scale are
chosen then the representation v will change but the underlying free vector v is
unchanged.

In other words, we say that v is coordinate free; it refers to a physical
quantity in the underlying space, and it does not care how we represent it.
However, v is a representation of v that depends on the choice of coordinate
frame.

A point p in physical space can also be represented as a vector. Given
a choice of reference frame and length scale for physical space, the point p
can be represented as a vector from the reference frame origin to p; its vector
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{a} x̂a

ŷa

p

pa

pb

{b}
x̂b

ŷb

Figure 3.1: The point p exists in physical space, and it does not care how we
represent it. If we fix a reference frame {a}, with unit coordinate axes x̂a and ŷa, we
can represent p as pa = (1, 2). If we fix a reference frame {b} at a different location, a
different orientation, and a different length scale, we can represent p as pb = (4,−2).

representation is denoted in italics by p ∈ Rn. Here, as before, a different
choice of reference frame and length scale for physical space leads to a different
representation p ∈ Rn for the same point p in physical space. See Figure 3.1.

In the rest of this book, a choice of length scale will always be assumed, but
we will be dealing with reference frames at different positions and orientations.
A reference frame can be placed anywhere in space, and any reference frame
leads to an equally valid representation of the underlying space and the objects
in it. We always assume that exactly one stationary fixed frame, or space
frame, denoted {s}, has been defined. This might be attached to a corner of a
room, for example. Similarly, we often assume that at least one frame has been
attached to some moving rigid body, such as the body of a quadrotor flying
in the room. This body frame, denoted {b}, is the stationary frame that is
coincident with the body-attached frame at any instant.

While it is common to attach the origin of the {b} frame to some important
point on the body, such as its center of mass, this is not necessary. The origin of
the {b} frame does not even need to be on the physical body itself, as long as its
configuration relative to the body, viewed from an observer stationary relative
to the body, is constant.

Important! All frames in this book are stationary, inertial, frames.
When we refer to a body frame {b}, we mean a motionless frame that is
instantaneously coincident with a frame that is fixed to a (possibly moving)
body. This is important to keep in mind, since you may have had a dynamics
course that used non-inertial moving frames attached to rotating bodies. Do
not confuse these with the stationary, inertial, body frames of this book.
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x̂

ŷ

ẑ
positive
rotation

Figure 3.2: (Left) The x̂, ŷ, and ẑ axes of a right-handed reference frame are aligned
with the index finger, middle finger, and thumb of the right hand, respectively. (Right)
A positive rotation about an axis is in the direction in which the fingers of the right
hand curl when the thumb is pointed along the axis.

For simplicity, we will usually refer to a body frame as a frame attached
to a moving rigid body. Despite this, at any instant, by “body frame” we
actually mean the stationary frame that is instantaneously coincident with
the frame moving along with the body.

It is worth repeating one more time: all frames are stationary.
All reference frames are right-handed, as illustrated in Figure 3.2. A

positive rotation about an axis is defined as the direction in which the fingers
of the right hand curl when the thumb is pointed along the axis (Figure 3.2).

3.1 Rigid-Body Motions in the Plane

Consider the planar body (the gray shape) in Figure 3.3; its motion is confined
to the plane. Suppose that a length scale and a fixed reference frame {s} have
been chosen as shown, with unit axes x̂s and ŷs. (Throughout this book, the
hat notation indicates a unit vector.) Similarly, we attach a reference frame
with unit axes x̂b and ŷb to the planar body. Because this frame moves with
the body, it is called the body frame and is denoted {b}.

To describe the configuration of the planar body, only the position and
orientation of the body frame with respect to the fixed frame need to be specified.
The body-frame origin p can be expressed in terms of the coordinate axes of
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{s} x̂s

ŷs

p
{b}

θ

x̂b

ŷb

Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the
vector p and the directions of the unit axes x̂b and ŷb. In this example, p = (2, 1) and
θ = 60◦, so x̂b = (cos θ, sin θ) = (0.5, 1/

√
2) and ŷb = (− sin θ, cos θ) = (−1/

√
2, 0.5).

{s} as
p = pxx̂s + pyŷs. (3.1)

You are probably more accustomed to writing this vector as simply p = (px, py);
this is fine when there is no possibility of ambiguity about reference frames, but
writing p as in Equation (3.1) clearly indicates the reference frame with respect
to which (px, py) is defined.

The simplest way to describe the orientation of the body frame {b} relative
to the fixed frame {s} is by specifying the angle θ, as shown in Figure 3.3.
Another (admittedly less simple) way is to specify the directions of the unit
axes x̂b and ŷb of {b} relative to {s}, in the form

x̂b = cos θ x̂s + sin θ ŷs, (3.2)

ŷb = − sin θ x̂s + cos θ ŷs. (3.3)

At first sight this seems to be a rather inefficient way of representing the body-
frame orientation. However, imagine if the body were to move arbitrarily in
three-dimensional space; a single angle θ would not suffice to describe the ori-
entation of the displaced reference frame. We would actually need three angles,
but it is not yet clear how to define an appropriate set of three angles. However,
expressing the directions of the coordinate axes of {b} in terms of coefficients
of the coordinate axes of {s}, as we have done above for the planar case, is
straightforward.

Assuming we agree to express everything in terms of {s} then, just as the
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{s} x̂s

ŷs p

r

{b}

x̂b

ŷb

θ

q ψ
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{c}
x̂c

ŷc

Figure 3.4: The frame {b} in {s} is given by (P, p), and the frame {c} in {b} is given
by (Q, q). From these we can derive the frame {c} in {s}, described by (R, r). The
numerical values of the vectors p, q, and r and the coordinate-axis directions of the
three frames are evident from the grid of unit squares.

point p can be represented as a column vector p ∈ R2 of the form

p =

[
px
py

]
, (3.4)

the two vectors x̂b and ŷb can also be written as column vectors and packaged
into the following 2× 2 matrix P :

P = [x̂b ŷb] =

[
cos θ − sin θ
sin θ cos θ

]
. (3.5)

The matrix P is an example of a rotation matrix. Although P consists of
four numbers, they are subject to three constraints (each column of P must be
a unit vector, and the two columns must be orthogonal to each other), and the
one remaining degree of freedom is parametrized by θ. Together, the pair (P, p)
provides a description of the orientation and position of {b} relative to {s}.

Now refer to the three frames in Figure 3.4. Repeating the approach above,
and expressing {c} in {s} as the pair (R, r), we can write

r =

[
rx
ry

]
, R =

[
cosφ − sinφ
sinφ cosφ

]
. (3.6)
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Chapter 3. Rigid-Body Motions 65

We could also describe the frame {c} relative to {b}. Letting q denote the
vector from the origin of {b} to the origin of {c} expressed in {b} coordinates,
and letting Q denote the orientation of {c} relative to {b}, we can write {c}
relative to {b} as the pair (Q, q), where

q =

[
qx
qy

]
, Q =

[
cosψ − sinψ
sinψ cosψ

]
. (3.7)

If we know (Q, q) (the configuration of {c} relative to {b}) and (P, p) (the
configuration of {b} relative to {s}), we can compute the configuration of {c}
relative to {s} as follows:

R = PQ (convert Q to the {s} frame) (3.8)

r = Pq + p (convert q to the {s} frame and vector-sum with p). (3.9)

Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used
to convert the representation of a point or frame from {b} coordinates to {s}
coordinates.

Now consider a rigid body with two frames attached to it, {d} and {c}. The
frame {d} is initially coincident with {s}, and {c} is initially described by (R, r)
in {s} (Figure 3.5(a)). Then the body is moved in such a way that {d} moves to
{d′}, becoming coincident with a frame {b} described by (P, p) in {s}. Where
does {c} end up after this motion? Denoting the configuration of the new frame
{c′} as (R′, r′), you can verify that

R′ = PR, (3.10)

r′ = Pr + p, (3.11)

which is similar to Equations (3.8) and (3.9). The difference is that (P, p) is ex-
pressed in the same frame as (R, r), so the equations are not viewed as a change
of coordinates, but instead as a rigid-body displacement (also known as a
rigid-body motion): in Figure 3.5(a) transformation 1© rotates {c} according
to P and transformation 2© translates it by p in {s}.

Thus we see that a rotation matrix–vector pair such as (P, p) can be used
for three purposes:

(a) to represent a configuration of a rigid body in {s} (Figure 3.3);

(b) to change the reference frame in which a vector or frame is represented
(Figure 3.4);

(c) to displace a vector or a frame (Figure 3.5(a)).
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{s,d} {s,d}

{c}{c}
{b,d }

Pr + p

p

r
p

Pr

s

β
{d }

{c } {c }

2

1

(a) (b)

Figure 3.5: (a) The frame {d}, fixed to an elliptical rigid body and initially coincident
with {s}, is displaced to {d′} (which is coincident with the stationary frame {b}),
by first rotating according to P then translating according to p, where (P, p) is the
representation of {b} in {s}. The same transformation takes the frame {c}, also
attached to the rigid body, to {c′}. The transformation marked 1© rigidly rotates
{c} about the origin of {s}, and then transformation 2© translates the frame by p
expressed in {s}. (b) Instead of viewing this displacement as a rotation followed by
a translation, both rotation and translation can be performed simultaneously. The
displacement can be viewed as a rotation of β = 90◦ about a fixed point s.

Referring to Figure 3.5(b), note that the rigid-body motion illustrated in
Figure 3.5(a), expressed as a rotation followed by a translation, can be obtained
by simply rotating the body about a fixed point s by an angle β. This is a planar
example of a screw motion.1 The displacement can therefore be parametrized
by the three screw coordinates (β, sx, sy), where (sx, sy) = (0, 2) denotes the
coordinates for the point s (i.e., the screw axis out of the page) in the fixed
frame {s}.

Another way to represent the screw motion is to consider it as the dis-
placement obtained by following simultaneous angular and linear velocities for
a given distance. Inspecting Figure 3.5(b), we see that rotating about s with
a unit angular velocity (ω = 1 rad/s) means that a point at the origin of the
{s} frame moves at two units per second initially in the +x̂-direction of the {s}
frame, i.e., v = (vx, vy) = (2, 0). We can package these together in the three-

1If the displacement is a pure translation without rotation, then s lies at infinity.
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vector S = (ω, vx, vy) = (1, 2, 0), a representation of the screw axis. Following
this screw axis for an angle θ = π/2 yields the final displacement. Thus we
can represent the displacement using the three coordinates Sθ = (π/2, π, 0).
These coordinates have some advantages, and we call these the exponential
coordinates for the planar rigid-body displacement.

To represent the combination of an angular and a linear velocity, called a
twist, we take a screw axis S = (ω, vx, vy), where ω = 1, and scale it by multi-

plying by some rotation speed, θ̇. The twist is V = S θ̇. The net displacement
obtained by rotating about the screw axis S by an angle θ is equivalent to the
displacement obtained by rotating about S at a speed θ̇ = θ for unit time, so
V = S θ̇ can also be considered a set of exponential coordinates.

Preview of the remainder of this chapter. In the rest of this chapter we
generalize the concepts above to three-dimensional rigid-body motions. For this
purpose consider a rigid body occupying three-dimensional physical space, as
shown in Figure 3.6. Assume that a length scale for physical space has been
chosen, and that both the fixed frame {s} and body frame {b} have been chosen
as shown. Throughout this book all reference frames are right-handed – the unit
axes {x̂, ŷ, ẑ} always satisfy x̂× ŷ = ẑ. Denote the unit axes of the fixed frame
by {x̂s, ŷs, ẑs} and the unit axes of the body frame by {x̂b, ŷb, ẑb}. Let p denote
the vector from the fixed-frame origin to the body-frame origin. In terms of the
fixed-frame coordinates, p can be expressed as

p = p1x̂s + p2ŷs + p3ẑs. (3.12)

The axes of the body frame can also be expressed as

x̂b = r11x̂s + r21ŷs + r31ẑs, (3.13)

ŷb = r12x̂s + r22ŷs + r32ẑs, (3.14)

ẑb = r13x̂s + r23ŷs + r33ẑs. (3.15)

Defining p ∈ R3 and R ∈ R3×3 as

p =



p1

p2

p3


 , R = [x̂b ŷb ẑb] =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (3.16)

the 12 parameters given by (R, p) then provide a description of the position and
orientation of the rigid body relative to the fixed frame.

Since the orientation of a rigid body has three degrees of freedom, only three
of the nine entries in R can be chosen independently. One three-parameter
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x̂s

ŷs

ẑs

p

x̂b

ŷb

ẑb

Figure 3.6: Mathematical description of position and orientation.

representation of rotations is provided by the exponential coordinates, which
define an axis of rotation and the angle rotated about that axis. We leave
other popular representations of orientations (the three-parameter Euler an-
gles and the roll–pitch–yaw angles, the Cayley–Rodrigues parameters,
and the unit quaternions, which use four variables subject to one constraint)
to Appendix B.

We then examine the six-parameter exponential coordinates for the config-
uration of a rigid body that arise from integrating a six-dimensional twist con-
sisting of the body’s angular and linear velocities. This representation follows
from the Chasles–Mozzi theorem which states that every rigid-body displace-
ment can be obtained by a finite rotation and translation about a fixed screw
axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that, of the nine entries in the rotation matrix R, only three
can be chosen independently. We begin by expressing a set of six explicit con-
straints on the entries of R. Recall that the three columns of R correspond to
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Chapter 3. Rigid-Body Motions 69

the body-frame unit axes {x̂b, ŷb, ẑb}. The following conditions must therefore
be satisfied.

(a) The unit norm condition: x̂b, ŷb, and ẑb are all unit vectors, i.e.,

r2
11 + r2

21 + r2
31 = 1,

r2
12 + r2

22 + r2
32 = 1, (3.17)

r2
13 + r2

23 + r2
33 = 1.

(b) The orthogonality condition: x̂b · ŷb = x̂b · ẑb = ŷb · ẑb = 0 (here · denotes
the inner product), or

r11r12 + r21r22 + r31r32 = 0,

r12r13 + r22r23 + r32r33 = 0, (3.18)

r11r13 + r21r23 + r31r33 = 0.

These six constraints can be expressed more compactly as a single set of con-
straints on the matrix R,

RTR = I, (3.19)

where RT denotes the transpose of R and I denotes the identity matrix.
There is still the matter of accounting for the fact that the frame is right-

handed (i.e., x̂b × ŷb = ẑb, where × denotes the cross product) rather than
left-handed (i.e., x̂b × ŷb = −ẑb); our six equality constraints above do not dis-
tinguish between right- and left-handed frames. We recall the following formula
for evaluating the determinant of a 3×3 matrix M : denoting the three columns
of M by a, b, and c, respectively, its determinant is given by

detM = aT(b× c) = cT(a× b) = bT(c× a). (3.20)

Substituting the columns for R into this formula then leads to the constraint

detR = 1. (3.21)

Note that, had the frame been left-handed, we would have detR = −1. In
summary, the six equality constraints represented by Equation (3.19) imply
that detR = ±1; imposing the additional constraint detR = 1 means that only
right-handed frames are allowed. The constraint detR = 1 does not change the
number of independent continuous variables needed to parametrize R.

The set of 3 × 3 rotation matrices forms the special orthogonal group
SO(3), which we now formally define.
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Definition 3.1. The special orthogonal group SO(3), also known as the
group of rotation matrices, is the set of all 3× 3 real matrices R that satisfy (i)
RTR = I and (ii) detR = 1.

The set of 2 × 2 rotation matrices is a subgroup of SO(3) and is denoted
SO(2).

Definition 3.2. The special orthogonal group SO(2) is the set of all 2× 2
real matrices R that satisfy (i) RTR = I and (ii) detR = 1.

From the definition it follows that every R ∈ SO(2) can be written

R =

[
r11 r12

r21 r22

]
=

[
cos θ − sin θ
sin θ cos θ

]
,

where θ ∈ [0, 2π). The elements of SO(2) represent planar orientations and the
elements of SO(3) represent spatial orientations.

3.2.1.1 Properties of Rotation Matrices

The sets of rotation matrices SO(2) and SO(3) are called groups because they
satisfy the properties required of a mathematical group.2 Specifically, a group
consists of a set of elements and an operation on two elements (matrix multipli-
cation for SO(n)) such that, for all A, B in the group, the following properties
are satisfied:

• closure: AB is also in the group.

• associativity: (AB)C = A(BC).

• identity element existence: There exists an element I in the group
(the identity matrix for SO(n)) such that AI = IA = A.

• inverse element existence: There exists an element A−1 in the group
such that AA−1 = A−1A = I.

Proofs of these properties are given below, using the fact that the identity
matrix I is a trivial example of a rotation matrix.

Proposition 3.3. The inverse of a rotation matrix R ∈ SO(3) is also a rotation
matrix, and it is equal to the transpose of R, i.e., R−1 = RT.

2More specifically, the SO(n) groups are also called matrix Lie groups (where “Lie” is
pronounced “Lee”) because the elements of the group form a differentiable manifold.
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Proof. The condition RTR = I implies that R−1 = RT and RRT = I. Since
detRT = detR = 1, RT is also a rotation matrix.

Proposition 3.4. The product of two rotation matrices is a rotation matrix.

Proof. Given R1, R2 ∈ SO(3), their product R1R2 satisfies (R1R2)T(R1R2) =
RT

2 R
T
1 R1R2 = RT

2 R2 = I. Further, detR1R2 = detR1 · detR2 = 1. Thus R1R2

satisfies the conditions for a rotation matrix.

Proposition 3.5. Multiplication of rotation matrices is associative, (R1R2)R3

= R1(R2R3), but generally not commutative, R1R2 6= R2R1. For the special
case of rotation matrices in SO(2), rotations commute.

Proof. Associativity and nocommutativity follows from the properties of matrix
multiplication in linear algebra. Commutativity for planar rotations follows
from a direct calculation.

Another important property is that the action of a rotation matrix on a
vector (e.g., rotating the vector) does not change the length of the vector.

Proposition 3.6. For any vector x ∈ R3 and R ∈ SO(3), the vector y = Rx
has the same length as x.

Proof. This follows from ‖y‖2 = yTy = (Rx)TRx = xTRTRx = xTx = ‖x‖2.

3.2.1.2 Uses of Rotation Matrices

Analogously to the discussion after Equations 3.10 and (3.11) in Section 3.1,
there are three major uses for a rotation matrix R:

(a) to represent an orientation;

(b) to change the reference frame in which a vector or a frame is represented;

(c) to rotate a vector or a frame.

In the first use, R is thought of as representing a frame; in the second and third
uses, R is thought of as an operator that acts on a vector or frame (changing
its reference frame or rotating it).

To illustrate these uses, refer to Figure 3.7, which shows three different coor-
dinate frames – {a}, {b}, and {c} – representing the same space. These frames
are chosen to have the same origin, since we are only representing orientations,
but, to make the axes clear, the figure shows the same space drawn three times.
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{a} {b} {c}

p p p

x̂a ŷa

ẑa

x̂b

ŷb

ẑb x̂c

ŷc
ẑc

Figure 3.7: The same space and the same point p represented in three different
frames with different orientations.

A point p in the space is also shown. Not shown is a fixed space frame {s},
which is aligned with {a}. The orientations of the three frames relative to {s}
can be written

Ra =




1 0 0
0 1 0
0 0 1


 , Rb =




0 −1 0
1 0 0
0 0 1


 , Rc =




0 −1 0
0 0 −1
1 0 0


 ,

and the location of the point p in these frames can be written

pa =




1
1
0


 , pb =




1
−1
0


 , pc =




0
−1
−1


 .

Note that {b} is obtained by rotating {a} about ẑa by 90◦, and {c} is obtained
by rotating {b} about ŷb by −90◦.

Representing an orientation When we write Rc, we are implicitly referring
to the orientation of frame {c} relative to the fixed frame {s}. We can be more
explicit about this by writing it as Rsc: we are representing the frame {c} of the
second subscript relative to the frame {s} of the first subscript. This notation
allows us to express one frame relative to another that is not {s}; for example,
Rbc is the orientation of {c} relative to {b}.

If there is no possibility of confusion regarding the frames involved, we may
simply write R.

Inspecting Figure 3.7, we see that

Rac =




0 −1 0
0 0 −1
1 0 0


 , Rca =




0 0 1
−1 0 0
0 −1 0


 .
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A simple calculation shows that RacRca = I; that is, Rac = R−1
ca or, equivalently,

from Proposition 3.3, Rac = RT
ca. In fact, for any two frames {d} and {e},

Rde = R−1
ed = RT

ed.

You can verify this fact using any two frames in Figure 3.7.

Changing the reference frame The rotation matrix Rab represents the
orientation of {b} in {a}, and Rbc represents the orientation of {c} in {b}.
A straightforward calculation shows that the orientation of {c} in {a} can be
computed as

Rac = RabRbc. (3.22)

In the previous equation, Rbc can be viewed as a representation of the orientation
of {c}, while Rab can be viewed as a mathematical operator that changes the
reference frame from {b} to {a}, i.e.,

Rac = RabRbc = change reference frame from {b} to {a} (Rbc).

A subscript cancellation rule helps us to remember this property. When
multiplying two rotation matrices, if the second subscript of the first matrix
matches the first subscript of the second matrix, the two subscripts “cancel”
and a change of reference frame is achieved:

RabRbc = R
a�b
R
�bc

= Rac.

A rotation matrix is just a collection of three unit vectors, so the reference
frame of a vector can also be changed by a rotation matrix using a modified
version of the subscript cancellation rule:

Rabpb = R
a�b
p
�b

= pa.

You can verify these properties using the frames and points in Figure 3.7.

Rotating a vector or a frame The final use of a rotation matrix is to rotate
a vector or a frame. Figure 3.8 shows a frame {c} initially aligned with {s} with
axes {x̂, ŷ, ẑ}. If we rotate the frame {c} about a unit axis ω̂ by an amount θ,
the new frame, {c′} (light gray), has coordinate axes {x̂′, ŷ′, ẑ′}. The rotation
matrix R = Rsc′ represents the orientation of {c′} relative to {s}, but instead
we can think of it as representing the rotation operation that takes {s} to {c′}.
Emphasizing our view of R as a rotation operator, instead of as an orientation,
we can write

R = Rot(ω̂, θ),
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Figure 3.8: A coordinate frame with axes {x̂, ŷ, ẑ} is rotated by θ about a unit axis
ω̂ (which is aligned with −ŷ in this figure). The orientation of the final frame, with
axes {x̂′, ŷ′, ẑ′}, is written as R relative to the original frame.

meaning the operation that rotates the orientation represented by the identity
matrix to the orientation represented by R. Examples of rotation operations
about coordinate frame axes are

Rot(x̂, θ) =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 , Rot(ŷ, θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 ,

Rot(ẑ, θ) =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

More generally, as we will see in Section 3.2.3.3, for ω̂ = (ω̂1, ω̂2, ω̂3),

Rot(ω̂, θ) =



cθ + ω̂2
1(1− cθ) ω̂1ω̂2(1− cθ)− ω̂3sθ ω̂1ω̂3(1− cθ) + ω̂2sθ

ω̂1ω̂2(1− cθ) + ω̂3sθ cθ + ω̂2
2(1− cθ) ω̂2ω̂3(1− cθ)− ω̂1sθ

ω̂1ω̂3(1− cθ)− ω̂2sθ ω̂2ω̂3(1− cθ) + ω̂1sθ cθ + ω̂2
3(1− cθ)


 ,

where sθ = sin θ and cθ = cos θ. Any R ∈ SO(3) can be obtained by rotating
from the identity matrix by some θ about some ω̂. Note also that Rot(ω̂, θ) =
Rot(−ω̂,−θ).

Now, say that Rsb represents some {b} relative to {s} and that we want to
rotate {b} by θ about a unit axis ω̂, i.e., by a rotation R = Rot(ω̂, θ). To be
clear about what we mean, we have to specify whether the axis of rotation ω̂ is
expressed in {s} coordinates or {b} coordinates. Depending on our choice, the
same numerical ω̂ (and therefore the same numerical R) corresponds to different
rotation axes in the underlying space, unless the {s} and {b} frames are aligned.
Letting {b′} be the new frame after a rotation by θ about ω̂s = ω̂ (the rotation
axis ω̂ is considered to be in the fixed frame, {s}), and letting {b′′} be the new
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x̂
ŷ

ẑ
90◦

90◦

90◦

R = Rot(ẑ, 90◦)

x̂

ŷ
ẑ

{s}
x̂s ŷs

ẑs

{b}

x̂b

ŷb

ẑb

ẑs

ẑb

Rsb = RRsb

Rsb = RsbR

{b }

x̂b

ŷb

ẑb

{b }

x̂b

ŷb
ẑb

fixed frame
rotation

body frame
rotation

Figure 3.9: (Top) The rotation operator R = Rot(ẑ, 90◦) gives the orientation of
the right-hand frame in the left-hand frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, which can be expressed as Rsb. The quantity RRsb
rotates {b} by 90◦ about the fixed-frame axis ẑs to {b′}. The quantity RsbR rotates
{b} by 90◦ about the body-frame axis ẑb to {b′′}.

frame after a rotation by θ about ω̂b = ω̂ (the rotation axis ω̂ is considered to be
in the body frame {b}), representations of these new frames can be calculated
as

Rsb′ = rotate by R in {s} frame (Rsb) = RRsb (3.23)

Rsb′′ = rotate by R in {b} frame (Rsb) = RsbR. (3.24)

In other words, premultiplying by R = Rot(ω̂, θ) yields a rotation about an
axis ω̂ considered to be in the fixed frame, and postmultiplying by R yields a
rotation about ω̂ considered as being in the body frame.

Rotation by R in the {s} frame and in the {b} frame is illustrated in Fig-
ure 3.9.

To rotate a vector v, note that there is only one frame involved, the frame
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x̂(t)

ŷ(t)

ẑ(t)

x̂(t + ∆t)

ŷ(t + ∆t)

ẑ(t + ∆t)

ω̂

∆θ
ω = ω̂θ̇

˙̂x = ω × x̂

x̂

ŷ

ẑ

Figure 3.10: (Left) The instantaneous angular velocity vector. (Right) Calculating
˙̂x.

in which v is represented, and therefore ω̂ must be interpreted as being in this
frame. The rotated vector v′, in that same frame, is

v′ = Rv.

3.2.2 Angular Velocities

Referring to Figure 3.10(a), suppose that a frame with unit axes {x̂, ŷ, ẑ} is
attached to a rotating body. Let us determine the time derivatives of these unit
axes. Beginning with ˙̂x, first note that x̂ is of unit length; only the direction
of x̂ can vary with time (the same goes for ŷ and ẑ). If we examine the body
frame at times t and t+∆t, the change in frame orientation can be described as
a rotation of angle ∆θ about some unit axis ŵ passing through the origin. The
axis ŵ is coordinate-free; it is not yet represented in any particular reference
frame.

In the limit as ∆t approaches zero, the ratio ∆θ/∆t becomes the rate of
rotation θ̇, and ŵ can similarly be regarded as the instantaneous axis of rotation.
In fact, ŵ and θ̇ can be combined to define the angular velocity w as follows:

w = ŵθ̇. (3.25)

Referring to Figure 3.10(b), it should be evident that

˙̂x = w× x̂, (3.26)
˙̂y = w× ŷ, (3.27)
˙̂z = w× ẑ. (3.28)
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To express these equations in coordinates, we have to choose a reference
frame in which to represent w. We can choose any reference frame, but two
natural choices are the fixed frame {s} and the body frame {b}. Let us start
with fixed-frame {s} coordinates. Let R(t) be the rotation matrix describing
the orientation of the body frame with respect to the fixed frame at time t; Ṙ(t)
is its time rate of change. The first column of R(t), denoted r1(t), describes x̂
in fixed-frame coordinates; similarly, r2(t) and r3(t) respectively describe ŷ and
ẑ in fixed-frame coordinates. At a specific time t, let ωs ∈ R3 be the angular
velocity w expressed in fixed-frame coordinates. Then Equations (3.26)–(3.28)
can be expressed in fixed-frame coordinates as

ṙi = ωs × ri, i = 1, 2, 3.

These three equations can be rearranged into the following single 3× 3 matrix
equation:

Ṙ = [ωs × r1 ωs × r2 ωs × r3] = ωs ×R. (3.29)

To eliminate the cross product on the right in Equation (3.29), we introduce
some new notation, rewriting ωs × R as [ωs]R, where [ωs] is a 3 × 3 skew-
symmetric matrix representation of ωs ∈ R3:

Definition 3.7. Given a vector x = [x1 x2 x3]T ∈ R3, define

[x] =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (3.30)

The matrix [x] is a 3× 3 skew-symmetric matrix representation of x; that is,

[x] = −[x]T.

The set of all 3× 3 real skew-symmetric matrices is called so(3).3

A useful property involving rotations and skew-symmetric matrices is the
following.

Proposition 3.8. Given any ω ∈ R3 and R ∈ SO(3), the following always
holds:

R[ω]RT = [Rω]. (3.31)

3The set of skew-symmetric matrices so(3) is called the Lie algebra of the Lie group SO(3).
It consists of all possible Ṙ when R = I.
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Proof. Letting rT
i be the ith row of R, we have

R[ω]RT =



rT
1 (ω × r1) rT

1 (ω × r2) rT
1 (ω × r3)

rT
2 (ω × r1) rT

2 (ω × r2) rT
2 (ω × r3)

rT
3 (ω × r1) rT

3 (ω × r2) rT
3 (ω × r3)




=




0 −rT
3 ω rT

2 ω

rT
3 ω 0 −rT

1 ω

−rT
2 ω rT

1 ω 0




= [Rω], (3.32)

where the second line makes use of the determinant formula for 3× 3 matrices,
i.e., if M is a 3 × 3 matrix with columns {a, b, c}, then detM = aT(b × c) =
cT(a× b) = bT(c× a).

With the skew-symmetric notation, we can rewrite Equation (3.29) as

[ωs]R = Ṙ. (3.33)

We can post-multiply both sides of Equation (3.33) by R−1 to get

[ωs] = ṘR−1. (3.34)

Now let ωb be w expressed in body-frame coordinates. To see how to obtain
ωb from ωs and vice versa, we write R explicitly as Rsb. Then ωs and ωb are
two different vector representations of the same angular velocity w and, by our
subscript cancellation rule, ωs = Rsbωb. Therefore

ωb = R−1
sb ωs = R−1ωs = RTωs. (3.35)

Let us now express this relation in skew-symmetric matrix form:

[ωb] = [RTωs]

= RT[ωs]R (by Proposition 3.8)

= RT(ṘRT)R

= RTṘ = R−1Ṙ. (3.36)

In summary, two equations relate R and Ṙ to the angular velocity w:
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Proposition 3.9. Let R(t) denote the orientation of the rotating frame as seen
from the fixed frame. Denote by w the angular velocity of the rotating frame.
Then

ṘR−1 = [ωs], (3.37)

R−1Ṙ = [ωb], (3.38)

where ωs ∈ R3 is the fixed-frame vector representation of w and [ωs] ∈ so(3)
is its 3 × 3 matrix representation, and where ωb ∈ R3 is the body-frame vector
representation of w and [ωb] ∈ so(3) is its 3× 3 matrix representation.

It is important to note that ωb is not the angular velocity relative to a moving
frame. Rather, ωb is the angular velocity relative to the stationary frame {b}
that is instantaneously coincident with a frame attached to the moving body.

It is also important to note that the fixed-frame angular velocity ωs does not
depend on the choice of body frame. Similarly, the body-frame angular velocity
ωb does not depend on the choice of fixed frame. While Equations (3.37) and
(3.38) may appear to depend on both frames (since R and Ṙ individually depend
on both {s} and {b}), the product ṘR−1 is independent of {b} and the product
R−1Ṙ is independent of {s}.

Finally, an angular velocity expressed in an arbitrary frame {d} can be
represented in another frame {c} if we know the rotation that takes {c} to {d},
using our now-familiar subscript cancellation rule:

ωc = Rcdωd.

3.2.3 Exponential Coordinate Representation of Rotation

We now introduce a three-parameter representation for rotations, the expo-
nential coordinates for rotation. The exponential coordinates parametrize
a rotation matrix in terms of a rotation axis (represented by a unit vector ω̂)
and an angle of rotation θ about that axis; the vector ω̂θ ∈ R3 then serves as the
three-parameter exponential coordinate representation of the rotation. Writing
ω̂ and θ individually is the axis-angle representation of a rotation.

The exponential coordinate representation ω̂θ for a rotation matrix R can
be interpreted equivalently as:

• the axis ω̂ and rotation angle θ such that, if a frame initially coincident
with {s} were rotated by θ about ω̂, its final orientation relative to {s}
would be expressed by R; or
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• the angular velocity ω̂θ expressed in {s} such that, if a frame initially
coincident with {s} followed ω̂θ for one unit of time (i.e., ω̂θ is integrated
over this time interval), its final orientation would be expressed by R; or

• the angular velocity ω̂ expressed in {s} such that, if a frame initially
coincident with {s} followed ω̂ for θ units of time (i.e., ω̂ is integrated over
this time interval) its final orientation would be expressed by R.

The latter two views suggest that we consider exponential coordinates in the
setting of linear differential equations. Below we briefly review some key results
from linear differential equations theory.

3.2.3.1 Essential Results from Linear Differential Equations Theory

Let us begin with the simple scalar linear differential equation

ẋ(t) = ax(t), (3.39)

where x(t) ∈ R, a ∈ R is constant, and the initial condition x(0) = x0 is given.
Equation (3.39) has solution

x(t) = eatx0.

It is also useful to remember the series expansion of the exponential function:

eat = 1 + at+
(at)2

2!
+

(at)3

3!
+ · · · .

Now consider the vector linear differential equation

ẋ(t) = Ax(t), (3.40)

where x(t) ∈ Rn, A ∈ Rn×n is constant, and the initial condition x(0) = x0 is
given. From the above scalar result one can conjecture a solution of the form

x(t) = eAtx0 (3.41)

where the matrix exponential eAt now needs to be defined in a meaningful
way. Again mimicking the scalar case, we define the matrix exponential to be

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ · · · (3.42)

The first question to be addressed is under what conditions this series converges,
so that the matrix exponential is well defined. It can be shown that if A is con-
stant and finite then this series is always guaranteed to converge to a finite limit;
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the proof can be found in most texts on ordinary linear differential equations
and is not covered here.

The second question is whether Equation (3.41), using Equation (3.42), is
indeed a solution to Equation (3.40). Taking the time derivative of x(t) = eAtx0,

ẋ(t) =

(
d

dt
eAt
)
x0

=
d

dt

(
I +At+

A2t2

2!
+
A3t3

3!
+ · · ·

)
x0

=

(
A+A2t+

A3t2

2!
+ · · ·

)
x0

= AeAtx0

= Ax(t), (3.43)

which proves that x(t) = eAtx0 is indeed a solution. That this is a unique
solution follows from the basic existence and uniqueness result for linear ordinary
differential equations, which we invoke here without proof.

While AB 6= BA for arbitrary square matrices A and B, it is always true
that

AeAt = eAtA (3.44)

for any square A and scalar t. You can verify this directly using the series
expansion for the matrix exponential. Therefore, in line four of Equation (3.43),
A could also have been factored to the right, i.e.,

ẋ(t) = eAtAx0.

While the matrix exponential eAt is defined as an infinite series, closed-
form expressions are often available. For example, if A can be expressed as
A = PDP−1 for some D ∈ Rn×n and invertible P ∈ Rn×n then

eAt = I +At+
(At)2

2!
+ · · ·

= I + (PDP−1)t+ (PDP−1)(PDP−1)
t2

2!
+ · · ·

= P (I +Dt+
(Dt)2

2!
+ · · · )P−1

= PeDtP−1. (3.45)
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If moreover D is diagonal, i.e., D = diag{d1, d2, . . . , dn}, then its matrix expo-
nential is particularly simple to evaluate:

eDt =




ed1t 0 · · · 0
0 ed2t · · · 0
...

...
. . .

...
0 0 · · · ednt


 . (3.46)

We summarize the results above in the following proposition.

Proposition 3.10. The linear differential equation ẋ(t) = Ax(t) with initial
condition x(0) = x0, where A ∈ Rn×n is constant and x(t) ∈ Rn, has solution

x(t) = eAtx0 (3.47)

where

eAt = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · · . (3.48)

The matrix exponential eAt further satisifies the following properties:

(a) d(eAt)/dt = AeAt = eAtA.

(b) If A = PDP−1 for some D ∈ Rn×n and invertible P ∈ Rn×n then eAt =
PeDtP−1.

(c) If AB = BA then eAeB = eA+B.

(d) (eA)−1 = e−A.

The third property can be established by expanding the exponentials and
comparing terms. The fourth property follows by setting B = −A in the third
property.

3.2.3.2 Exponential Coordinates of Rotations

The exponential coordinates of a rotation can be viewed equivalently as (1) a
unit axis of rotation ω̂ (ω̂ ∈ R3, ‖ω̂‖ = 1) together with a rotation angle about
the axis θ ∈ R, or (2) as the 3-vector obtained by multiplying the two together,
ω̂θ ∈ R3. When we represent the motion of a robot joint in the next chapter,
the first view has the advantage of separating the description of the joint axis
from the motion θ about the axis.

Referring to Figure 3.11, suppose that a three-dimensional vector p(0) is
rotated by θ about ω̂ to p(θ); here we assume that all quantities are expressed
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φ

θ

p(θ)

p(0)

ω̂

Figure 3.11: The vector p(0) is rotated by an angle θ about the axis ω̂, to p(θ).

in fixed-frame coordinates. This rotation can be achieved by imagining that
p(0) rotates at a constant rate of 1 rad/s (since ω̂ has unit magnitude) from
time t = 0 to t = θ. Let p(t) denote the path traced by the tip of the vector.
The velocity of p(t), denoted ṗ, is then given by

ṗ = ω̂ × p. (3.49)

To see why this is true, let φ be the constant angle between p(t) and ω̂. Observe
that p traces a circle of radius ‖p‖ sinφ about the ω̂-axis. Then ṗ is tangent to
the path with magnitude ‖p‖ sinφ, which is equivalent to Equation (3.49).

The differential equation (3.49) can be expressed as (see Equation (3.30))

ṗ = [ω̂]p (3.50)

with initial condition p(0). This is a linear differential equation of the form
ẋ = Ax, which we studied earlier; its solution is given by

p(t) = e[ω̂]tp(0).

Since t and θ are interchangeable, the equation above can also be written

p(θ) = e[ω̂]θp(0).

Let us now expand the matrix exponential e[ω̂]θ in series form. A straight-
forward calculation shows that [ω̂]3 = −[ω̂], and therefore we can replace [ω̂]3

by −[ω̂], [ω̂]4 by −[ω̂]2, [ω̂]5 by −[ω̂]3 = [ω̂], and so on, obtaining

e[ω̂]θ = I + [ω̂]θ + [ω̂]2
θ2

2!
+ [ω̂]3

θ3

3!
+ · · ·

= I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
[ω̂] +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
[ω̂]2.
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Now recall the series expansions for sin θ and cos θ:

sin θ = θ − θ3

3!
+
θ5

5!
− · · ·

cos θ = 1− θ2

2!
+
θ4

4!
− · · ·

The exponential e[ω̂]θ therefore simplifies to the following:

Proposition 3.11. Given a vector ω̂θ ∈ R3, such that θ is any scalar and
ω̂ ∈ R3 is a unit vector, the matrix exponential of [ω̂]θ = [ω̂θ] ∈ so(3) is

Rot(ω̂, θ) = e[ω̂]θ = I + sin θ [ω̂] + (1− cos θ)[ω̂]2 ∈ SO(3). (3.51)

Equation (3.51) is also known as Rodrigues’ formula for rotations.
We have shown how to use the matrix exponential to construct a rotation

matrix from a rotation axis ω̂ and an angle θ. Further, the quantity e[ω̂]θp
has the effect of rotating p ∈ R3 about the fixed-frame axis ω̂ by an angle θ.
Similarly, considering that a rotation matrix R consists of three column vectors,
the rotation matrix R′ = e[ω̂]θR = Rot(ω̂, θ)R is the orientation achieved by
rotating R by θ about the axis ω̂ in the fixed frame. Reversing the order of
matrix multiplication, R′′ = Re[ω̂]θ = RRot(ω̂, θ) is the orientation achieved by
rotating R by θ about ω̂ in the body frame.

Example 3.12. The frame {b} in Figure 3.12 is obtained by rotation from
an initial orientation aligned with the fixed frame {s} about a unit axis ω̂1 =
(0, 0.866, 0.5) by an angle θ1 = 30◦ = 0.524 rad. The rotation matrix represen-
tation of {b} can be calculated as

R = e[ω̂1]θ1

= I + sin θ1[ω̂1] + (1− cos θ1)[ω̂1]2

= I + 0.5




0 −0.5 0.866
0.5 0 0
−0.866 0 0


+ 0.134




0 −0.5 0.866
0.5 0 0
−0.866 0 0




2

=




0.866 −0.250 0.433
0.250 0.967 0.058
−0.433 0.058 0.899


 .

The orientation of the frame {b} can be represented by R or by the unit axis
ω̂1 = (0, 0.866, 0.5) and the angle θ1 = 0.524 rad, i.e., the exponential coordi-
nates ω̂1θ1 = (0, 0.453, 0.262).
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x̂s ŷs

ẑs

ω̂

θ = 30◦

{b}
x̂b

ŷb

ẑb

{s}

Figure 3.12: The frame {b} is obtained by a rotation from {s} by θ1 = 30◦ about
ω̂1 = (0, 0.866, 0.5).

If {b} is then rotated by θ2 about a fixed-frame axis ω̂2 6= ω̂1, i.e.,

R′ = e[ω̂2]θ2R,

then the frame ends up at a different location than that reached were {b} to be
rotated by θ2 about an axis expressed as ω̂2 in the body frame, i.e.,

R′′ = Re[ω̂2]θ2 6= R′ = e[ω̂2]θ2R.

Our next task is to show that for any rotation matrix R ∈ SO(3), one can
always find a unit vector ω̂ and scalar θ such that R = e[ω̂]θ.

3.2.3.3 Matrix Logarithm of Rotations

If ω̂θ ∈ R3 represents the exponential coordinates of a rotation matrix R, then
the skew-symmetric matrix [ω̂θ] = [ω̂]θ is the matrix logarithm of the rotation
R.4 The matrix logarithm is the inverse of the matrix exponential. Just as the
matrix exponential “integrates” the matrix representation of an angular velocity
[ω̂]θ ∈ so(3) for one second to give an orientation R ∈ SO(3), the matrix
logarithm “differentiates” an R ∈ SO(3) to find the matrix representation of
a constant angular velocity [ω̂]θ ∈ so(3) which, if integrated for one second,
rotates a frame from I to R. In other words,

exp : [ω̂]θ ∈ so(3) → R ∈ SO(3),
log : R ∈ SO(3) → [ω̂]θ ∈ so(3).

4We use the term “the matrix logarithm” to refer both to a specific matrix which is a
logarithm of R as well as to the algorithm that calculates this specific matrix. Also, while a
matrix R can have more than one matrix logarithm (just as sin−1(0) has solutions 0, π, 2π,
etc.), we commonly refer to “the” matrix logarithm, i.e., the unique solution returned by the
matrix logarithm algorithm.
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To derive the matrix logarithm, let us expand each entry for e[ω̂]θ in Equa-
tion (3.51),




cθ + ω̂2
1(1− cθ) ω̂1ω̂2(1− cθ)− ω̂3sθ ω̂1ω̂3(1− cθ) + ω̂2sθ

ω̂1ω̂2(1− cθ) + ω̂3sθ cθ + ω̂2
2(1− cθ) ω̂2ω̂3(1− cθ)− ω̂1sθ

ω̂1ω̂3(1− cθ)− ω̂2sθ ω̂2ω̂3(1− cθ) + ω̂1sθ cθ + ω̂2
3(1− cθ)


 ,

(3.52)
where ω̂ = (ω̂1, ω̂2, ω̂3), and we use again the shorthand notation sθ = sin θ
and cθ = cos θ. Setting the above matrix equal to the given R ∈ SO(3) and
subtracting the transpose from both sides leads to the following:

r32 − r23 = 2ω̂1 sin θ,

r13 − r31 = 2ω̂2 sin θ,

r21 − r12 = 2ω̂3 sin θ.

Therefore, as long as sin θ 6= 0 (or, equivalently, θ is not an integer multiple of
π), we can write

ω̂1 =
1

2 sin θ
(r32 − r23),

ω̂2 =
1

2 sin θ
(r13 − r31),

ω̂3 =
1

2 sin θ
(r21 − r12).

The above equations can also be expressed in skew-symmetric matrix form as

[ω̂] =




0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0


 =

1

2 sin θ

(
R−RT

)
. (3.53)

Recall that ω̂ represents the axis of rotation for the given R. Because of the
sin θ term in the denominator, [ω̂] is not well defined if θ is an integer multiple
of π.5 We address this situation next, but for now let us assume that sin θ 6= 0
and find an expression for θ. Setting R equal to (3.52) and taking the trace of
both sides (recall that the trace of a matrix is the sum of its diagonal entries),

trR = r11 + r22 + r33 = 1 + 2 cos θ. (3.54)

The above follows since ω̂2
1 + ω̂2

2 + ω̂2
3 = 1. For any θ satisfying 1 +2 cos θ = trR

such that θ is not an integer multiple of π, R can be expressed as the exponential
e[ω̂]θ with [ω̂] as given in Equation (3.53).

5Singularities such as this are unavoidable for any three-parameter representation of rota-
tion. Euler angles and roll–pitch–yaw angles suffer from similar singularities.
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Let us now return to the case θ = kπ, where k is some integer. When k is
an even integer, regardless of ω̂ we have rotated back to R = I so the vector
ω̂ is undefined. When k is an odd integer (corresponding to θ = ±π,±3π, . . .,
which in turn implies trR = −1), the exponential formula (3.51) simplifies to

R = e[ω̂]π = I + 2[ω̂]2. (3.55)

The three diagonal terms of Equation (3.55) can be manipulated to give

ω̂i = ±
√
rii + 1

2
, i = 1, 2, 3. (3.56)

The off-diagonal terms lead to the following three equations:

2ω̂1ω̂2 = r12,

2ω̂2ω̂3 = r23, (3.57)

2ω̂1ω̂3 = r13,

From Equation (3.55) we also know that R must be symmetric: r12 = r21,
r23 = r32, r13 = r31. Equations (3.56) and (3.57) may both be necessary to
obtain a solution for ω̂. Once such a solution has been found then R = e[ω̂]θ,
where θ = ±π,±3π, . . .

From the above it can be seen that solutions for θ exist at 2π intervals. If
we restrict θ to the interval [0, π] then the following algorithm can be used to
compute the matrix logarithm of the rotation matrix R ∈ SO(3).

Algorithm: Given R ∈ SO(3), find a θ ∈ [0, π] and a unit rotation axis
ω̂ ∈ R3, ‖ω̂‖ = 1, such that e[ω̂]θ = R. The vector ω̂θ ∈ R3 comprises the
exponential coordinates for R and the skew-symmetric matrix [ω̂]θ ∈ so(3) is
the matrix logarithm of R.

(a) If R = I then θ = 0 and ω̂ is undefined.

(b) If trR = −1 then θ = π. Set ω̂ equal to any of the following three vectors
that is a feasible solution:

ω̂ =
1√

2(1 + r33)




r13

r23

1 + r33


 (3.58)

or

ω̂ =
1√

2(1 + r22)




r12

1 + r22

r32


 (3.59)
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−π π

θ

ω̂

Figure 3.13: SO(3) as a solid ball of radius π. The exponential coordinates r = ω̂θ
may lie anywhere within the solid ball.

or

ω̂ =
1√

2(1 + r11)




1 + r11

r21

r31


 . (3.60)

(Note that if ω̂ is a solution, then so is −ω̂.)

(c) Otherwise θ = cos−1
(

1
2 (trR− 1)

)
∈ [0, π) and

[ω̂] =
1

2 sin θ
(R−RT). (3.61)

Since every R ∈ SO(3) satisfies one of the three cases in the algorithm, for
every R there exists a matrix logarithm [ω̂]θ and therefore a set of exponential
coordinates ω̂θ.

Because the matrix logarithm calculates exponential coordinates ω̂θ satisfy-
ing ||ω̂θ|| ≤ π, we can picture the rotation group SO(3) as a solid ball of radius
π (see Figure 3.13): given a point r ∈ R3 in this solid ball, let ω̂ = r/‖r‖ be the
unit axis in the direction from the origin to the point r and let θ = ‖r‖ be the
distance from the origin to r, so that r = ω̂θ. The rotation matrix correspond-
ing to r can then be regarded as a rotation about the axis ω̂ by an angle θ. For
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any R ∈ SO(3) such that trR 6= −1, there exists a unique r in the interior of
the solid ball such that e[r] = R. In the event that trR = −1, logR is given
by two antipodal points on the surface of this solid ball. That is, if there exists
some r such that R = e[r] with ‖r‖ = π then R = e[−r] also holds; both r and
−r correspond to the same rotation R.

3.3 Rigid-Body Motions and Twists

In this section we derive representations for rigid-body configurations and ve-
locities that extend, but otherwise are analogous to, those in Section 3.2 for
rotations and angular velocities. In particular, the homogeneous transforma-
tion matrix T is analogous to the rotation matrix R; a screw axis S is analogous
to a rotation axis ω̂; a twist V can be expressed as S θ̇ and is analogous to an
angular velocity ω = ω̂θ̇; and exponential coordinates Sθ ∈ R6 for rigid-body
motions are analogous to exponential coordinates ω̂θ ∈ R3 for rotations.

3.3.1 Homogeneous Transformation Matrices

We now consider representations for the combined orientation and position of
a rigid body. A natural choice would be to use a rotation matrix R ∈ SO(3)
to represent the orientation of the body frame {b} in the fixed frame {s} and a
vector p ∈ R3 to represent the origin of {b} in {s}. Rather than identifying R
and p separately, we package them into a single matrix as follows.

Definition 3.13. The special Euclidean group SE(3), also known as the
group of rigid-body motions or homogeneous transformation matrices
in R3, is the set of all 4× 4 real matrices T of the form

T =

[
R p
0 1

]
=




r11 r12 r13 p1

r21 r22 r23 p2

r31 r32 r33 p3

0 0 0 1


 , (3.62)

where R ∈ SO(3) and p ∈ R3 is a column vector.

An element T ∈ SE(3) will sometimes be denoted (R, p). In this section we
will establish some basic properties of SE(3) and explain why we package R
and p into this matrix form.

Many robotic mechanisms we have encountered thus far are planar. With
planar rigid-body motions in mind, we make the following definition:
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Definition 3.14. The special Euclidean group SE(2) is the set of all 3× 3 real
matrices T of the form

T =

[
R p
0 1

]
, (3.63)

where R ∈ SO(2), p ∈ R2, and 0 denotes a row vector of two zeros.

A matrix T ∈ SE(2) is always of the form

T =



r11 r12 p1

r21 r22 p2

0 0 1


 =




cos θ − sin θ p1

sin θ cos θ p2

0 0 1


 ,

where θ ∈ [0, 2π).

3.3.1.1 Properties of Transformation Matrices

We now list some basic properties of transformation matrices, which can be
proven by calculation. First, the identity I is a trivial example of a transforma-
tion matrix. The first three properties confirm that SE(3) is a group.

Proposition 3.15. The inverse of a transformation matrix T ∈ SE(3) is also
a transformation matrix, and it has the following form:

T−1 =

[
R p
0 1

]−1

=

[
RT −RTp
0 1

]
. (3.64)

Proposition 3.16. The product of two transformation matrices is also a trans-
formation matrix.

Proposition 3.17. The multiplication of transformation matrices is associa-
tive, so that (T1T2)T3 = T1(T2T3), but generally not commutative: T1T2 6= T2T1.

Before stating the next proposition, we note that, just as in Section 3.1,
it is often useful to calculate the quantity Rx + p, where x ∈ R3 and (R, p)
represents T . If we append a ‘1’ to x, making it a four-dimensional vector, this
computation can be performed as a single matrix multiplication:

T

[
x
1

]
=

[
R p
0 1

] [
x
1

]
=

[
Rx+ p

1

]
. (3.65)

The vector [xT 1]T is the representation of x in homogeneous coordinates,
and accordingly T ∈ SE(3) is called a homogenous transformation. When, by
an abuse of notation, we write Tx, we mean Rx+ p.
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Proposition 3.18. Given T = (R, p) ∈ SE(3) and x, y ∈ R3, the following
hold:

(a) ‖Tx−Ty‖ = ‖x− y‖, where ‖ · ‖ denotes the standard Euclidean norm in

R3, i.e., ‖x‖ =
√
xTx.

(b) 〈Tx−Tz, Ty−Tz〉 = 〈x− z, y− z〉 for all z ∈ R3, where 〈·, ·〉 denotes the
standard Euclidean inner product in R3, 〈x, y〉 = xTy.

In Proposition 3.18, T is regarded as a transformation on points in R3; T trans-
forms a point x to Tx. Property (a) then asserts that T preserves distances,
while property (b) asserts that T preserves angles. Specifically, if x, y, z ∈ R3

represent the three vertices of a triangle then the triangle formed by the trans-
formed vertices {Tx, Ty, Tz} has the same set of lengths and angles as those
of the triangle {x, y, z} (the two triangles are said to be isometric). One can
easily imagine taking {x, y, z} to be the points on a rigid body, in which case
{Tx, Ty, Tz} represents a displaced version of the rigid body. It is in this sense
that SE(3) can be identified with rigid-body motions.

3.3.1.2 Uses of Transformation Matrices

As was the case for rotation matrices, there are three major uses for a transfor-
mation matrix T :

(a) to represent the configuration (position and orientation) of a rigid body;

(b) to change the reference frame in which a vector or frame is represented;

(c) to displace a vector or frame.

In the first use, T is thought of as representing the configuration of a frame; in
the second and third uses, T is thought of as an operator that acts to change
the reference frame or to move a vector or a frame.

To illustrate these uses, we refer to the three reference frames {a}, {b}, and
{c}, and the point v, in Figure 3.14. The frames were chosen in such a way
that the alignment of their axes is clear, allowing the visual confirmation of
calculations.

Representing a configuration. The fixed frame {s} is coincident with {a}
and the frames {a}, {b}, and {c}, represented by Tsa = (Rsa, psa), Tsb =
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v

{b}

x̂b

ŷb

ẑb pab

pac

pbc

{a}
x̂a ŷa

ẑa

{c}
x̂c

ŷc

ẑc

Figure 3.14: Three reference frames in space, and a point v that can be represented
in {b} as vb = (0, 0, 1.5).

(Rsb, psb), and Tsc = (Rsc, psc), respectively, can be expressed relative to {s} by
the rotations

Rsa =




1 0 0
0 1 0
0 0 1


 , Rsb =




0 0 1
0 −1 0
1 0 0


 , Rsc =



−1 0 0

0 0 1
0 1 0


 .

The location of the origin of each frame relative to {s} can be written

psa =




0
0
0


 , psb =




0
−2
0


 , psc =



−1
1
0


 .

Since {a} is collocated with {s}, the transformation matrix Tsa constructed from
(Rsa, psa) is the identity matrix.

Any frame can be expressed relative to any other frame, not just to {s}; for
example, Tbc = (Rbc, pbc) represents {b} relative to {c}:

Rbc =




0 1 0
0 0 −1
−1 0 0


 , pbc =




0
−3
−1


 .

It can also be shown, using Proposition 3.15, that

Tde = T−1
ed

for any two frames {d} and {e}.
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Changing the reference frame of a vector or a frame. By a subscript
cancellation rule analogous to that for rotations, for any three reference frames
{a}, {b}, and {c}, and any vector v expressed in {b} as vb,

TabTbc = T
a�b
T
�bc

= Tac

Tabvb = T
a�b
v
�b

= va,

where va is the vector v expressed in {a}.

Displacing (rotating and translating) a vector or a frame. A transfor-
mation matrix T , viewed as the pair (R, p) = (Rot(ω̂, θ), p), can act on a frame
Tsb by rotating it by θ about an axis ω̂ and translating it by p. By a minor
abuse of notation, we can extend the 3× 3 rotation operator R = Rot(ω̂, θ) to
a 4× 4 transformation matrix that rotates without translating,

Rot(ω̂, θ) =

[
R 0
0 1

]
,

and we can similarly define a translation operator that translates without ro-
tating,

Trans(p) =




1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1


 .

(To parallel the rotation operator more directly, we could write Trans(p̂, ‖p‖),
a translation along the unit direction p̂ by a distance ‖p‖, but we will use the
simpler notation with p = p̂‖p‖.)

Whether we pre-multiply or post-multiply Tsb by T = (R, p) determines
whether the ω̂-axis and p are interpreted as in the fixed frame {s} or in the
body frame {b}:

Tsb′ = TTsb = Trans(p) Rot(ω̂, θ)Tsb (fixed frame)

=

[
R p
0 1

] [
Rsb psb
0 1

]
=

[
RRsb Rpsb + p

0 1

]
(3.66)

Tsb′′ = TsbT = Tsb Trans(p) Rot(ω̂, θ) (body frame)

=

[
Rsb psb
0 1

] [
R p
0 1

]
=

[
RsbR Rsbp+ psb

0 1

]
. (3.67)

The fixed-frame transformation (corresponding to pre-multiplication by T ) can
be interpreted as first rotating the {b} frame by θ about an axis ω̂ in the {s}
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{b}

{b}

x̂b

x̂b

ŷb

ŷb
ẑb

ẑb

{s}

{s}

x̂s

x̂s

ŷs

ŷs

ẑs

ẑs

{b }

x̂b

ŷb ẑb

{b }x̂b

ŷb

ẑb
1

1

2

2

Figure 3.15: Fixed-frame and body-frame transformations corresponding to ω̂ =
(0, 0, 1), θ = 90◦, and p = (0, 2, 0). (Left) The frame {b} is rotated by 90◦ about ẑs
and then translated by two units in ŷs, resulting in the new frame {b′}. (Right) The
frame {b} is translated by two units in ŷb and then rotated by 90◦ about its ẑ axis,
resulting in the new frame {b′′}.

frame (this rotation will cause the origin of {b} to move if it is not coincident
with the origin of {s}), then translating it by p in the {s} frame to get a frame
{b′}. The body-frame transformation (corresponding to post-multiplication by
T ) can be interpreted as first translating {b} by p considered to be in the {b}
frame, then rotating about ω̂ in this new body frame (this does not move the
origin of the frame) to get {b′′}.

Fixed-frame and body-frame transformations are illustrated in Figure 3.15
for a transformation T with ω̂ = (0, 0, 1), θ = 90◦, and p = (0, 2, 0), yielding

T = (Rot(ω̂, θ), p) =




0 −1 0 0
1 0 0 2
0 0 1 0
0 0 0 1


 .

Beginning with the frame {b} represented by

Tsb =




0 0 1 0
0 −1 0 −2
1 0 0 0
0 0 0 1


 ,

the new frame {b′} achieved by a fixed-frame transformation TTsb and the new
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{a}

{b}

{c}
{d}

}{e

Figure 3.16: Assignment of reference frames.

frame {b′′} achieved by a body-frame transformation TsbT are given by

TTsb = Tsb′ =




0 1 0 2
0 0 1 2
1 0 0 0
0 0 0 1


 , TsbT = Tsb′′ =




0 0 1 0
−1 0 0 −4
0 −1 0 0
0 0 0 1


 .

Example 3.19. Figure 3.16 shows a robot arm mounted on a wheeled mobile
platform moving in a room, and a camera fixed to the ceiling. Frames {b}
and {c} are respectively attached to the wheeled platform and the end-effector
of the robot arm, and frame {d} is attached to the camera. A fixed frame
{a} has been established, and the robot must pick up an object with body
frame {e}. Suppose that the transformations Tdb and Tde can be calculated
from measurements obtained with the camera. The transformation Tbc can
be calculated using the arm’s joint-angle measurements. The transformation
Tad is assumed to be known in advance. Suppose these calculated and known
transformations are given as follows:

Tdb =




0 0 −1 250
0 −1 0 −150
−1 0 0 200
0 0 0 1


 ,
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Tde =




0 0 −1 300
0 −1 0 100
−1 0 0 120
0 0 0 1


 ,

Tad =




0 0 −1 400
0 −1 0 50
−1 0 0 300
0 0 0 1


 ,

Tbc =




0 −1/
√

2 −1/
√

2 30

0 1/
√

2 −1/
√

2 −40
1 0 0 25
0 0 0 1


 .

In order to calculate how to move the robot arm so as to pick up the object, the
configuration of the object relative to the robot hand, Tce, must be determined.
We know that

TabTbcTce = TadTde,

where the only quantity besides Tce not given to us directly is Tab. However,
since Tab = TadTdb, we can determine Tce as follows:

Tce = (TadTdbTbc)
−1
TadTde.

From the given transformations we obtain

TadTde =




1 0 0 280
0 1 0 −50
0 0 1 0
0 0 0 1


 ,

TadTdbTbc =




0 −1/
√

2 −1/
√

2 230

0 1/
√

2 −1/
√

2 160
1 0 0 75
0 0 0 1


 ,

(TadTdbTbc)
−1

=




0 0 1 −75

−1/
√

2 1/
√

2 0 70/
√

2

−1/
√

2 −1/
√

2 0 390/
√

2
0 0 0 1


 ,

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org


Chapter 3. Rigid-Body Motions 97

from which Tce is evaluated to be

Tce =




0 0 1 −75

−1/
√

2 1/
√

2 0 −260/
√

2

−1/
√

2 −1/
√

2 0 130/
√

2
0 0 0 1


 .

3.3.2 Twists

We now consider both the linear and angular velocities of a moving frame.
As before, {s} and {b} denote the fixed (space) and moving (body) frames,
respectively. Let

Tsb(t) = T (t) =

[
R(t) p(t)

0 1

]
(3.68)

denote the configuration of {b} as seen from {s}. To keep the notation unclut-
tered, for the time being we write T instead of the usual Tsb.

In Section 3.2.2 we discovered that pre- or post-multiplying Ṙ by R−1 results
in a skew-symmetric representation of the angular velocity vector, either in
fixed- or body-frame coordinates. One might reasonably ask whether a similar
property carries over to Ṫ , i.e., whether T−1Ṫ and Ṫ T−1 carry similar physical
interpretations.

Let us first see what happens when we pre-multiply Ṫ by T−1:

T−1Ṫ =

[
RT −RTp
0 1

] [
Ṙ ṗ
0 0

]

=

[
RTṘ RTṗ

0 0

]

=

[
[ωb] vb
0 0

]
. (3.69)

Recall that RTṘ = [ωb] is just the skew-symmetric matrix representation of the
angular velocity expressed in {b} coordinates. Also, ṗ is the linear velocity of
the origin of {b} expressed in the fixed frame {s}, and RTṗ = vb is this linear
velocity expressed in the frame {b}. Putting these two observations together,
we can conclude that T−1Ṫ represents the linear and angular velocities of the
moving frame relative to the stationary frame {b} currently aligned with the
moving frame.

The above calculation of T−1Ṫ suggests that it is reasonable to merge ωb and
vb into a single six-dimensional velocity vector. We define the spatial velocity
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{s}

vs

−p

{b}
ṗ

Figure 3.17: Physical interpretation of vs. The initial (solid line) and displaced
(dashed line) configurations of a rigid body.

in the body frame, or simply the body twist,6 to be

Vb =

[
ωb
vb

]
∈ R6. (3.70)

Just as it is convenient to have a skew-symmetric matrix representation of an
angular velocity vector, it is convenient to have a matrix representation of a
twist, as shown in Equation (3.69). We will stretch the [·] notation, writing

T−1Ṫ = [Vb] =

[
[ωb] vb
0 0

]
∈ se(3), (3.71)

where [ωb] ∈ so(3) and vb ∈ R3. The set of all 4 × 4 matrices of this form is
called se(3) and comprises the matrix representations of the twists associated
with the rigid-body configurations SE(3).7

6The term “twist” has been used in different ways in the mechanisms and screw theory
literature. In robotics, however, it is common to use the term to refer to a spatial velocity.
We mostly use the term “twist” instead of “spatial velocity” to minimize verbiage, e.g., “body
twist” versus “spatial velocity in the body frame.”

7se(3) is called the Lie algebra of the Lie group SE(3). It consists of all possible Ṫ when
T = I.
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Now that we have a physical interpretation for T−1Ṫ , let us evaluate Ṫ T−1:

Ṫ T−1 =

[
Ṙ ṗ
0 0

] [
RT −RTp
0 1

]

=

[
ṘRT ṗ− ṘRTp

0 0

]

=

[
[ωs] vs
0 0

]
. (3.72)

Observe that the skew-symmetric matrix [ωs] = ṘRT is the angular velocity
expressed in fixed-frame coordinates but that vs = ṗ− ṘRTp is not the linear
velocity of the body-frame origin expressed in the fixed frame (that quantity
would simply be ṗ). If we write vs as

vs = ṗ− ωs × p = ṗ+ ωs × (−p), (3.73)

the physical meaning of vs can now be inferred: imagining the moving body
to be infinitely large, vs is the instantaneous velocity of the point on this body
currently at the fixed-frame origin, expressed in the fixed frame (see Figure 3.17).

As we did for ωb and vb, we assemble ωs and vs into a six-dimensional twist,

Vs =

[
ωs
vs

]
∈ R6, [Vs] =

[
[ωs] vs
0 0

]
= Ṫ T−1 ∈ se(3), (3.74)

where [Vs] is the 4 × 4 matrix representation of Vs. We call Vs the spatial
velocity in the space frame, or simply the spatial twist.

If we regard the moving body as being infinitely large, there is an appealing
and natural symmetry between Vs = (ωs, vs) and Vb = (ωb, vb):

(a) ωb is the angular velocity expressed in {b}, and ωs is the angular velocity
expressed in {s}.

(b) vb is the linear velocity of a point at the origin of {b} expressed in {b},
and vs is the linear velocity of a point at the origin of {s} expressed in
{s}.

We can obtain Vb from Vs as follows:

[Vb] = T−1Ṫ

= T−1 [Vs]T. (3.75)

Going the other way,
[Vs] = T [Vb]T−1. (3.76)
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Writing out the products in Equation (3.76), we get

Vs =

[
R[ωb]R

T −R[ωb]R
Tp+Rvb

0 0

]

which, using R[ω]RT = [Rω] (Proposition 3.8) and [ω]p = −[p]ω for p, ω ∈ R3,
can be manipulated into the following relation between Vb and Vs:

[
ωs
vs

]
=

[
R 0

[p]R R

] [
ωb
vb

]
.

Because the 6×6 matrix pre-multiplying Vb is useful for changing the frame
of reference for twists and wrenches, as we will see shortly, we give it its own
name.

Definition 3.20. Given T = (R, p) ∈ SE(3), its adjoint representation
[AdT ] is

[AdT ] =

[
R 0

[p]R R

]
∈ R6×6.

For any V ∈ R6, the adjoint map associated with T is

V ′ = [AdT ]V,

which is sometimes also written as

V ′ = AdT (V).

In terms of the matrix form [V] ∈ se(3) of V ∈ R6,

[V ′] = T [V]T−1.

The adjoint map satisfies the following properties, verifiable by direct calcu-
lation:

Proposition 3.21. Let T1, T2 ∈ SE(3) and V = (ω, v). Then

AdT1
(AdT2

(V)) = AdT1T2
(V) or [AdT1

][AdT2
]V = [AdT1T2

]V. (3.77)

Also, for any T ∈ SE(3) the following holds:

[AdT ]−1 = [AdT−1 ], (3.78)

The second property follows from the first on choosing T1 = T−1 and T2 = T ,
so that

AdT−1 (AdT (V)) = AdT−1T (V) = AdI(V) = V. (3.79)
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3.3.2.1 Summary of Results on Twists

The main results on twists derived thus far are summarized in the following
proposition:

Proposition 3.22. Given a fixed (space) frame {s}, a body frame {b}, and a
differentiable Tsb(t) ∈ SE(3), where

Tsb(t) =

[
R(t) p(t)

0 1

]
, (3.80)

then

T−1
sb Ṫsb = [Vb] =

[
[ωb] vb
0 0

]
∈ se(3) (3.81)

is the matrix representation of the body twist, and

ṪsbT
−1
sb = [Vs] =

[
[ωs] vs
0 0

]
∈ se(3) (3.82)

is the matrix representation of the spatial twist. The twists Vs and Vb are
related by

Vs =

[
ωs
vs

]
=

[
R 0

[p]R R

] [
ωb
vb

]
= [AdTsb ]Vb, (3.83)

Vb =

[
ωb
vb

]
=

[
RT 0
−RT[p] RT

] [
ωs
vs

]
= [AdTbs ]Vs. (3.84)

More generally, for any two frames {c} and {d}, a twist represented as Vc in
{c} is related to its representation Vd in {d} by

Vc = [AdTcd ]Vd, Vd = [AdTdc ]Vc.

Again analogously to the case of angular velocities, it is important to realize
that, for a given twist, its fixed-frame representation Vs does not depend on the
choice of the body frame {b}, and its body-frame representation Vb does not
depend on the choice of the fixed frame {s}.

Example 3.23. Figure 3.18 shows a top view of a car, with a single steerable
front wheel, driving on a plane. The ẑb-axis of the body frame {b} is into the
page and the ẑs-axis of the fixed frame {s} is out of the page. The angle of
the front wheel of the car causes the car’s motion to be a pure angular velocity
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x̂s

ŷs {b}
x̂b

ŷbvb

r

{s}

vs
w

Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
a three-wheeled vehicle can be visualized as an angular velocity w about the point r.

w = 2 rad/s about an axis out of the page at the point r in the plane. Inspecting
the figure, we can write r as rs = (2,−1, 0) or rb = (2,−1.4, 0), w as ωs = (0, 0, 2)
or ωb = (0, 0,−2), and Tsb as

Tsb =

[
Rsb psb
0 1

]
=




−1 0 0 4
0 1 0 0.4
0 0 −1 0
0 0 0 1


 .

From the figure and simple geometry, we get

vs = ωs × (−rs) = rs × ωs = (−2,−4, 0),

vb = ωb × (−rb) = rb × ωb = (2.8, 4, 0),

and thus obtain the twists Vs and Vb:

Vs =

[
ωs
vs

]
=




0
0
2
−2
−4
0



, Vb =

[
ωb
vb

]
=




0
0
−2
2.8
4
0



.

To confirm these results, try calculating Vs = [AdTsb ]Vb.

3.3.2.2 The Screw Interpretation of a Twist

Just as an angular velocity ω can be viewed as ω̂θ̇, where ω̂ is the unit rotation
axis and θ̇ is the rate of rotation about that axis, a twist V can be interpreted
in terms of a screw axis S and a velocity θ̇ about the screw axis.
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−ŝθ̇ × q

hŝθ̇

x̂ ŷ

ẑ

q

ŝ

θ̇

h = pitch =
linear speed/angular speed

Figure 3.19: A screw axis S represented by a point q, a unit direction ŝ, and a pitch
h.

A screw axis represents the familiar motion of a screw: rotating about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q ∈ R3 is any point on the axis, ŝ is a unit
vector in the direction of the axis, and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity θ̇ about
the screw axis (Figure 3.19).

Using Figure 3.19 and geometry, we can write the twist V = (ω, v) corre-
sponding to an angular velocity θ̇ about S (represented by {q, ŝ, h}) as

V =

[
ω
v

]
=

[
ŝθ̇

−ŝθ̇ × q + hŝθ̇

]
.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝθ̇, and the other due to the linear motion at the origin
induced by rotation about the axis, −ŝθ̇ × q. The first term is in the direction
of ŝ, while the second term is in the plane orthogonal to ŝ. It is not hard to
show that, for any V = (ω, v) where ω 6= 0, there exists an equivalent screw axis
{q, ŝ, h} and velocity θ̇, where ŝ = ω/‖ω‖, θ̇ = ‖ω‖, h = ω̂Tv/θ̇, and q is chosen
so that the term −ŝθ̇× q provides the portion of v orthogonal to the screw axis.

If ω = 0, then the pitch h of the screw is infinite. In this case ŝ is chosen as
v/‖v‖, and θ̇ is interpreted as the linear velocity ‖v‖ along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and with the nonuniqueness
of q (any q along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (ω, v) corresponding to motion
along the screw:
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(a) If ω 6= 0 then S = V/‖ω‖ = (ω/‖ω‖, v/‖ω‖). The screw axis S is simply
V normalized by the length of the angular velocity vector. The angular
velocity about the screw axis is θ̇ = ‖ω‖, such that S θ̇ = V.

(b) If ω = 0 then S = V/‖v‖ = (0, v/‖v‖). The screw axis S is simply V
normalized by the length of the linear velocity vector. The linear velocity
along the screw axis is θ̇ = ‖v‖, such that S θ̇ = V.

This leads to the following definition of a “unit” (normalized) screw axis:

Definition 3.24. For a given reference frame, a screw axis S is written as

S =

[
ω
v

]
∈ R6,

where either (i) ‖ω‖ = 1 or (ii) ω = 0 and ‖v‖ = 1. If (i) holds then v =
−ω × q + hω, where q is a point on the axis of the screw and h is the pitch of
the screw (h = 0 for a pure rotation about the screw axis). If (ii) holds then the
pitch of the screw is infinite and the twist is a translation along the axis defined
by v.

Important: Although we use the pair (ω, v) for both a normalized
screw axis S (where one of ‖ω‖ or ‖v‖ must be unity) and a general twist
V (where there are no constraints on ω and v), the meaning should be clear
from the context.

Since a screw axis S is just a normalized twist, the 4×4 matrix representation
[S] of S = (ω, v) is

[S] =

[
[ω] v
0 0

]
∈ se(3), [ω] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ∈ so(3), (3.85)

where the bottom row of [S] consists of all zeros. Also, a screw axis represented
as Sa in a frame {a} is related to the representation Sb in a frame {b} by

Sa = [AdTab ]Sb, Sb = [AdTba ]Sa.

3.3.3 Exponential Coordinate Representation of Rigid-Body
Motions

3.3.3.1 Exponential Coordinates of Rigid-Body Motions

In the planar example in Section 3.1, we saw that any planar rigid-body dis-
placement can be achieved by rotating the rigid body about some fixed point
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in the plane (for a pure translation, this point lies at infinity). A similar result
also exists for spatial rigid-body displacements: the Chasles–Mozzi theorem
states that every rigid-body displacement can be expressed as a displacement
along a fixed screw axis S in space.

By analogy to the exponential coordinates ω̂θ for rotations, we define the six-
dimensional exponential coordinates of a homogeneous transformation
T as Sθ ∈ R6, where S is the screw axis and θ is the distance that must be
traveled along the screw axis to take a frame from the origin I to T . If the pitch
of the screw axis S = (ω, v) is finite then ‖ω‖ = 1 and θ corresponds to the
angle of rotation about the screw axis. If the pitch of the screw is infinite then
ω = 0 and ‖v‖ = 1 and θ corresponds to the linear distance traveled along the
screw axis.

Also by analogy to the rotation case, we define a matrix exponential (exp)
and matrix logarithm (log):

exp : [S]θ ∈ se(3) → T ∈ SE(3),
log : T ∈ SE(3) → [S]θ ∈ se(3).

We begin by deriving a closed-form expression for the matrix exponential
e[S]θ. Expanding the matrix exponential in series form leads to

e[S]θ = I + [S]θ + [S]2
θ2

2!
+ [S]3

θ3

3!
+ · · ·

=

[
e[ω]θ G(θ)v

0 1

]
, G(θ) = Iθ + [ω]

θ2

2!
+ [ω]2

θ3

3!
+ · · · .(3.86)

Using the identity [ω]3 = −[ω], G(θ) can be simplified to

G(θ) = Iθ + [ω]
θ2

2!
+ [ω]2

θ3

3!
+ · · ·

= Iθ +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
[ω] +

(
θ3

3!
− θ5

5!
+
θ7

7!
− · · ·

)
[ω]2

= Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2. (3.87)

Putting everything together leads to the following proposition:

Proposition 3.25. Let S = (ω, v) be a screw axis. If ‖ω‖ = 1 then, for any
distance θ ∈ R traveled along the axis,

e[S]θ =

[
e[ω]θ

(
Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2

)
v

0 1

]
. (3.88)
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If ω = 0 and ‖v‖ = 1, then

e[S]θ =

[
I vθ
0 1

]
. (3.89)

3.3.3.2 Matrix Logarithm of Rigid-Body Motions

The above derivation essentially provides a constructive proof of the Chasles–
Mozzi theorem. That is, given an arbitrary (R, p) ∈ SE(3), one can always find
a screw axis S = (ω, v) and a scalar θ such that

e[S]θ =

[
R p
0 1

]
, (3.90)

i.e., the matrix

[S]θ =

[
[ω]θ vθ

0 0

]
∈ se(3)

is the matrix logarithm of T = (R, p).

Algorithm: Given (R, p) written as T ∈ SE(3), find a θ ∈ [0, π] and a screw
axis S = (ω, v) ∈ R6 (where at least one of ‖ω‖ and ‖v‖ is unity) such that
e[S]θ = T . The vector Sθ ∈ R6 comprises the exponential coordinates for T and
the matrix [S]θ ∈ se(3) is the matrix logarithm of T .

(a) If R = I then set ω = 0, v = p/‖p‖, and θ = ‖p‖.

(b) Otherwise, use the matrix logarithm on SO(3) to determine ω (written as
ω̂ in the SO(3) algorithm) and θ for R. Then v is calculated as

v = G−1(θ)p (3.91)

where

G−1(θ) =
1

θ
I − 1

2
[ω] +

(
1

θ
− 1

2
cot

θ

2

)
[ω]2. (3.92)

The verification of Equation (3.92) is left as an exercise.

Example 3.26. In this example, the rigid-body motion is confined to the x̂s–
ŷs-plane. The initial frame {b} and final frame {c} in Figure 3.20 can be repre-
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{s} x̂s

ŷs

v = (3.37,−3.37)

{c}

x̂c

ŷc

{b}
x̂b

ŷb
θ

ω3 = 1 rad/s

q = (3.37, 3.37)

Figure 3.20: Two frames in a plane.

sented by the SE(3) matrices

Tsb =




cos 30◦ − sin 30◦ 0 1
sin 30◦ cos 30◦ 0 2

0 0 1 0
0 0 0 1


 ,

Tsc =




cos 60◦ − sin 60◦ 0 2
sin 60◦ cos 60◦ 0 1

0 0 1 0
0 0 0 1


 .

Because the motion occurs in the x̂s–ŷs-plane, the corresponding screw has an
axis in the direction of the ẑs-axis and has zero pitch. The screw axis S = (ω, v),
expressed in {s}, therefore has the form

ω = (0, 0, ω3),

v = (v1, v2, 0).

We seek the screw motion that displaces the frame at Tsb to Tsc; i.e., Tsc =
e[S]θTsb or

TscT
−1
sb = e[S]θ,
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where

[S] =




0 −ω3 0 v1

ω3 0 0 v2

0 0 0 0
0 0 0 0


 .

We can apply the matrix logarithm algorithm directly to TscT
−1
sb to obtain [S]

(and therefore S) and θ as follows:

[S] =




0 −1 0 3.37
1 0 0 −3.37
0 0 0 0
0 0 0 0


 , S =




ω1

ω2

ω3

v1

v2

v3




=




0
0
1

3.37
−3.37

0



, θ =

π

6
rad (or 30◦).

The value of S means that the constant screw axis, expressed in the fixed frame
{s}, is represented by an angular velocity of 1 rad/s about ẑs and a linear velocity
(of a point currently at the origin of {s}) of (3.37,−3.37, 0) expressed in the {s}
frame.

Alternatively, we can observe that the displacement is not a pure translation
– Tsb and Tsc have rotation components that differ by an angle of 30◦ – and we
quickly determine that θ = 30◦ and ω3 = 1. We can also graphically determine
the point q = (qx, qy) in the x̂s–ŷs-plane through which the screw axis passes;
for our example this point is given by q = (3.37, 3.37).

For planar rigid-body motions such as this one, we could derive a planar
matrix logarithm algorithm that maps elements of SE(2) to elements of se(2),
which have the form 


0 −ω v1

ω 0 v2

0 0 0


 .

3.4 Wrenches

Consider a linear force f acting on a rigid body at a point r. Defining a reference
frame {a}, the point r can be represented as ra ∈ R3 and the force f can be
represented as fa ∈ R3. This force creates a torque or moment ma ∈ R3 in
the {a} frame:

ma = ra × fa.
Note that the point of application of the force along its line of action is imma-
terial.
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{a}

{b}

r

f

ra

rb

Figure 3.21: Relation between wrench representations Fa and Fb.

Just as with twists, we can merge the moment and force into a single six-
dimensional spatial force, or wrench, expressed in the {a} frame, Fa:

Fa =

[
ma

fa

]
∈ R6. (3.93)

If more than one wrench acts on a rigid body, the total wrench on the body is
simply the vector sum of the individual wrenches, provided that the wrenches
are expressed in the same frame. A wrench with a zero linear component is
called a pure moment.

A wrench in the {a} frame can be represented in another frame {b} (Fig-
ure 3.21) if Tba is known. One way to derive the relationship between Fa and Fb
is to derive the appropriate transformations between the individual force and
moment vectors on the basis of techniques we have already used.

A simpler and more insightful way to derive the relationship between Fa
and Fb, however, is to (1) use the results we have already derived relating
representations Va and Vb of the same twist, and (2) use the fact that the power
generated (or dissipated) by an (F ,V) pair must be the same regardless of the
frame in which it is represented. (Imagine if we could create power simply
by changing our choice of reference frame!) Recall that the dot product of a
force and a velocity is a power, and power is a coordinate-independent quantity.
Because of this, we know that

VT
b Fb = VT

a Fa. (3.94)

From Proposition 3.22 we know that Va = [AdTab ]Vb, and therefore Equa-
tion (3.94) can be rewritten as

VT
b Fb = ([AdTab ]Vb)TFa

= VT
b [AdTab ]

TFa.
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ŷf

x̂f

ẑa

x̂a

ŷh

x̂h

L2L1

g

Figure 3.22: A robot hand holding an apple subject to gravity.

Since this must hold for all Vb, this simplifies to

Fb = [AdTab ]
TFa. (3.95)

Similarly,
Fa = [AdTba ]TFb. (3.96)

Proposition 3.27. Given a wrench F, represented in {a} as Fa and in {b} as
Fb, the two representations are related by

Fb = AdT
Tab

(Fa) = [AdTab ]
TFa, (3.97)

Fa = AdT
Tba

(Fb) = [AdTba ]TFb. (3.98)

Since we usually have a fixed space frame {s} and a body frame {b}, we can
define a spatial wrench Fs and a body wrench Fb.

Example 3.28. The robot hand in Figure 3.22 is holding an apple with a mass
of 0.1 kg in a gravitational field g = 10 m/s2 (rounded to keep the numbers
simple) acting downward on the page. The mass of the hand is 0.5 kg. What is
the force and torque measured by the six-axis force–torque sensor between the
hand and the robot arm?

We define frames {f} at the force–torque sensor, {h} at the center of mass
of the hand, and {a} at the center of mass of the apple. According to the
coordinate axes in Figure 3.22, the gravitational wrench on the hand in {h} is
given by the column vector

Fh = (0, 0, 0, 0,−5 N, 0)

and the gravitational wrench on the apple in {a} is

Fa = (0, 0, 0, 0, 0, 1 N).
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Given L1 = 10 cm and L2 = 15 cm, the transformation matrices Thf and Taf
are

Thf =




1 0 0 −0.1 m
0 1 0 0
0 0 1 0
0 0 0 1


 , Taf =




1 0 0 −0.25 m
0 0 1 0
0 −1 0 0
0 0 0 1


 .

The wrench measured by the six-axis force–torque sensor is

Ff = [AdThf ]TFh + [AdTaf ]TFa
= [0 0 − 0.5 Nm 0 − 5 N 0]T + [0 0 − 0.25 Nm 0 − 1 N 0]T

= [0 0 − 0.75 Nm 0 − 6 N 0]T.

3.5 Summary

The following table succinctly summarizes some of the key concepts from the
chapter, as well as the parallelism between rotations and rigid-body motions.
For more details, consult the appropriate section of the chapter.
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Rotations Rigid-Body Motions

R ∈ SO(3) : 3× 3 matrices T ∈ SE(3) : 4× 4 matrices

RTR = I, detR = 1 T =

[
R p
0 1

]
,

where R ∈ SO(3), p ∈ R3

R−1 = RT T−1 =

[
RT −RTp
0 1

]

change of coordinate frame: change of coordinate frame:
RabRbc = Rac, Rabpb = pa TabTbc = Tac, Tabpb = pa

rotating a frame {b}: displacing a frame {b}:
R = Rot(ω̂, θ) T =

[
Rot(ω̂, θ) p

0 1

]

Rsb′ = RRsb: Tsb′ = TTsb: rotate θ about ω̂s = ω̂
rotate θ about ω̂s = ω̂ (moves {b} origin), translate p in {s}

Rsb′′ = RsbR: Tsb′′ = TsbT : translate p in {b},
rotate θ about ω̂b = ω̂ rotate θ about ω̂ in new body frame

unit rotation axis is ω̂ ∈ R3, “unit” screw axis is S =

[
ω
v

]
∈ R6,

where ‖ω̂‖ = 1 where either (i) ‖ω‖ = 1 or
(ii) ω = 0 and ‖v‖ = 1

for a screw axis {q, ŝ, h} with finite h,

S =

[
ω
v

]
=

[
ŝ

−ŝ× q + hŝ

]

angular velocity is ω = ω̂θ̇ twist is V = S θ̇

continued...
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Rotations (cont.) Rigid-Body Motions (cont.)

for any 3-vector, e.g., ω ∈ R3, for V =

[
ω
v

]
∈ R6,

[ω]=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


∈so(3) [V] =

[
[ω] v
0 0

]
∈ se(3)

identities, ω, x ∈ R3, R ∈ SO(3): (the pair (ω, v) can be a twist V
[ω] = −[ω]T, [ω]x = −[x]ω, or a “unit” screw axis S,

[ω][x] = ([x][ω])T, R[ω]RT = [Rω] depending on the context)

ṘR−1 = [ωs], R−1Ṙ = [ωb] Ṫ T−1 = [Vs], T−1Ṫ = [Vb]

[AdT ] =

[
R 0

[p]R R

]
∈ R6×6

identities: [AdT ]−1 = [AdT−1 ],
[AdT1

][AdT2
] = [AdT1T2

]

change of coordinate frame: change of coordinate frame:
ω̂a = Rabω̂b, ωa = Rabωb Sa = [AdTab ]Sb, Va = [AdTab ]Vb

exp coords for R ∈ SO(3): ω̂θ ∈ R3 exp coords for T ∈ SE(3): Sθ ∈ R6

exp : [ω̂]θ ∈ so(3)→ R ∈ SO(3) exp : [S]θ ∈ se(3)→ T ∈ SE(3)

R = Rot(ω̂, θ) = e[ω̂]θ = T = e[S]θ =

[
e[ω]θ ∗

0 1

]

I + sin θ[ω̂] + (1− cos θ)[ω̂]2 where ∗ =
(Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2)v

log : R ∈ SO(3)→ [ω̂]θ ∈ so(3) log : T ∈ SE(3)→ [S]θ ∈ se(3)
algorithm in Section 3.2.3.3 algorithm in Section 3.3.3.2

moment change of coord frame: wrench change of coord frame:
ma = Rabmb Fa = (ma, fa) = [AdTba ]TFb

3.6 Software

The following functions are included in the software distribution accompany-
ing the book. The code below is in MATLAB format, but it is available in
other languages. For more details on the software, consult the code and its
documentation.

invR = RotInv(R)
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114 3.6. Software

Computes the inverse of the rotation matrix R.

so3mat = VecToso3(omg)

Returns the 3× 3 skew-symmetric matrix corresponding to omg.

omg = so3ToVec(so3mat)

Returns the 3-vector corresponding to the 3×3 skew-symmetric matrix so3mat.

[omghat,theta] = AxisAng3(expc3)

Extracts the rotation axis ω̂ and the rotation amount θ from the 3-vector ω̂θ of
exponential coordinates for rotation, expc3.

R = MatrixExp3(so3mat)

Computes the rotation matrix R ∈ SO(3) corresponding to the matrix exponen-
tial of so3mat ∈ so(3).

so3mat = MatrixLog3(R)

Computes the matrix logarithm so3mat ∈ so(3) of the rotation matrix R ∈
SO(3).

T = RpToTrans(R,p)

Builds the homogeneous transformation matrix T corresponding to a rotation
matrix R ∈ SO(3) and a position vector p ∈ R3.

[R,p] = TransToRp(T)

Extracts the rotation matrix and position vector from a homogeneous transfor-
mation matrix T.

invT = TransInv(T)

Computes the inverse of a homogeneous transformation matrix T.

se3mat = VecTose3(V)

Returns the se(3) matrix corresponding to a 6-vector twist V.

V = se3ToVec(se3mat)

Returns the 6-vector twist corresponding to an se(3) matrix se3mat.

AdT = Adjoint(T)

Computes the 6× 6 adjoint representation [AdT ] of the homogeneous transfor-
mation matrix T.

S = ScrewToAxis(q,s,h)

Returns a normalized screw axis representation S of a screw described by a unit
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vector s in the direction of the screw axis, located at the point q, with pitch h.

[S,theta] = AxisAng(expc6)

Extracts the normalized screw axis S and the distance traveled along the screw
θ from the 6-vector of exponential coordinates Sθ.
T = MatrixExp6(se3mat)

Computes the homogeneous transformation matrix T ∈ SE(3) corresponding to
the matrix exponential of se3mat ∈ se(3).

se3mat = MatrixLog6(T)

Computes the matrix logarithm se3mat ∈ se(3) of the homogeneous transfor-
mation matrix T ∈ SE(3).

3.7 Notes and References

The exponential coordinates for rotations introduced in this chapter are also re-
ferred to in the kinematics literature as the Euler–Rodrigues parameters. Other
representations for rotations such as Euler angles, Cayley–Rodrigues parame-
ters, and unit quaternions are described in Appendix B; further details on these
and related parametrizations of the rotation group SO(3) can be found in, e.g.,
[169, 113, 186, 122, 135].

Classical screw theory has its origins in the works of Mozzi and Chasles,
who independently discovered that the motion of a rigid body can be obtained
as a rotation about some axis followed by a translation about the same axis
[25]. Ball’s treatise [6] is often regarded as the classical reference on screw
theory, while more modern treatments can be found in Bottema and Roth [18],
Angeles [2], and McCarthy [113].

The identification of elements of classical screw theory with the Lie group
structure of the rigid body motions SE(3) was first made by Brockett in [20],
who went considerably further and showed that the forward kinematics of open
chains can be expressed as the product of matrix exponentials (this is the subject
of the next chapter). Derivations of the formulas for the matrix exponentials,
logarithms, their derivatives, and other related formulas can be found in [92,
129, 131, 122].
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3.8 Exercises

Exercise 3.1 In terms of the x̂s, ŷs, ẑs coordinates of a fixed space frame {s},
the frame {a} has its x̂a-axis pointing in the direction (0, 0, 1) and its ŷa-axis
pointing in the direction (−1, 0, 0), and the frame {b} has its x̂b-axis pointing
in the direction (1, 0, 0) and its ŷb-axis pointing in the direction (0, 0,−1).

(a) Draw by hand the three frames, at different locations so that they are easy
to see.

(b) Write down the rotation matrices Rsa and Rsb.
(c) Given Rsb, how do you calculate R−1

sb without using a matrix inverse?
Write down R−1

sb and verify its correctness using your drawing.
(d) Given Rsa and Rsb, how do you calculate Rab (again without using ma-

trix inverses)? Compute the answer and verify its correctness using your
drawing.

(e) Let R = Rsb be considered as a transformation operator consisting of
a rotation about x̂ by −90◦. Calculate R1 = RsaR, and think of Rsa
as a representation of an orientation, R as a rotation of Rsa, and R1 as
the new orientation after the rotation has been performed. Does the new
orientation R1 correspond to a rotation of Rsa by −90◦ about the world-
fixed x̂s-axis or about the body-fixed x̂a-axis? Now calculate R2 = RRsa.
Does the new orientation R2 correspond to a rotation of Rsa by −90◦

about the world-fixed x̂s-axis or about the body-fixed x̂a-axis?
(f) Use Rsb to change the representation of the point pb = (1, 2, 3) (which is

in {b} coordinates) to {s} coordinates.
(g) Choose a point p represented by ps = (1, 2, 3) in {s} coordinates. Calculate

p′ = Rsbps and p′′ = RT
sbps. For each operation, should the result be

interpreted as changing coordinates (from the {s} frame to {b}) without
moving the point p or as moving the location of the point without changing
the reference frame of the representation?

(h) An angular velocity w is represented in {s} as ωs = (3, 2, 1). What is its
representation ωa in {a}?

(i) By hand, calculate the matrix logarithm [ω̂]θ of Rsa. (You may verify your
answer with software.) Extract the unit angular velocity ω̂ and rotation
amount θ. Redraw the fixed frame {s} and in it draw ω̂.

(j) Calculate the matrix exponential corresponding to the exponential coor-
dinates of rotation ω̂θ = (1, 2, 0). Draw the corresponding frame relative
to {s}, as well as the rotation axis ω̂.
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Exercise 3.2 Let p be a point whose coordinates are p =
(

1√
3
,− 1√

6
, 1√

2

)
with

respect to the fixed frame x̂–ŷ–ẑ. Suppose that p is rotated about the fixed-
frame x̂-axis by 30 degrees, then about the fixed-frame ŷ-axis by 135 degrees, and
finally about the fixed-frame ẑ-axis by −120 degrees. Denote the coordinates of
this newly rotated point by p′.

(a) What are the coordinates p′?
(b) Find the rotation matrix R such that p′ = Rp for the p′ you obtained in

(a).

Exercise 3.3 Suppose that pi ∈ R3 and p′i ∈ R3 are related by p′i = Rpi,
i = 1, 2, 3, for some unknown rotation matrix R. Find, if it exists, the rotation
R for the three input–output pairs pi 7→ p′i, where

p1 = (
√

2, 0, 2) 7→ p′1 = (0, 2,
√

2),

p2 = (1, 1,−1) 7→ p′2 =

(
1√
2
,

1√
2
,−
√

2

)
,

p3 = (0, 2
√

2, 0) 7→ p′3 = (−
√

2,
√

2,−2).

Exercise 3.4 In this exercise you are asked to prove the property RabRbc =
Rac of Equation (3.22). Define the unit axes of frames {a}, {b}, and {c} by
the triplets of orthogonal unit vectors {x̂a, ŷa, ẑa}, {x̂b, ŷb, ẑb}, and {x̂c, ŷc, ẑc},
respectively. Suppose that the unit axes of frame {b} can be expressed in terms
of the unit axes of frame {a} by

x̂b = r11x̂a + r21ŷa + r31ẑa,
ŷb = r12x̂a + r22ŷa + r32ẑa,
ẑb = r13x̂a + r23ŷa + r33ẑa.

Similarly, suppose that the unit axes of frame {c} can be expressed in terms of
the unit axes of frame {b} by

x̂c = s11x̂b + s21ŷb + s31ẑb,
ŷc = s12x̂b + s22ŷb + s32ẑb,
ẑc = s13x̂b + s23ŷb + s33ẑb.
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From the above prove that RabRbc = Rac.

Exercise 3.5 Find the exponential coordinates ω̂θ ∈ R3 for the SO(3) matrix



0 −1 0
0 0 −1
1 0 0


 .

Exercise 3.6 Given R = Rot(x̂, π/2)Rot(ẑ, π), find the unit vector ω̂ and
angle θ such that R = e[ω̂]θ.

Exercise 3.7
(a) Given the rotation matrix

R =




0 0 1
0 −1 0
1 0 0


 ,

find all possible values for ω̂ ∈ R3, ‖ω̂‖ = 1, and θ ∈ [0, 2π) such that
e[ω̂]θ = R.

(b) The two vectors v1, v2 ∈ R3 are related by

v2 = Rv1 = e[ω̂]θv1

where ω̂ ∈ R3 has length 1, and θ ∈ [−π, π]. Given ω̂ = ( 2
3 ,

2
3 ,

1
3 ), v1 =

(1, 0, 1), v2 = (0, 1, 1), find all the angles θ that satisfy the above equation.

Exercise 3.8
(a) Suppose that we are seeking the logarithm of a rotation matrix R whose

trace is −1. From the exponential formula

e[ω̂]θ = I + sin θ [ω̂] + (1− cos θ)[ω̂]2, ‖ω‖ = 1,

and recalling that trR = −1 implies θ = π, the above equation simplifies
to

R = I + 2[ω̂]2 =




1− 2(ω̂2
2 + ω̂2

3) 2ω̂1ω̂2 2ω̂1ω̂3

2ω̂1ω̂2 1− 2(ω̂2
1 + ω̂2

3) 2ω̂2ω̂3

2ω̂1ω̂2 2ω̂2ω̂3 1− 2(ω̂2
1 + ω̂2

2)


 .

Using the fact that ω̂2
1 + ω̂2

2 + ω̂2
3 = 1, is it correct to conclude that

ω̂1 =

√
r11 + 1

2
, ω̂2 =

√
r22 + 1

2
, ω̂3 =

√
r33 + 1

2
,
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where rij denotes the (i, j)th entry of R, is also a solution?
(b) Using the fact that [ω̂]3 = −[ω̂], the identity R = I + 2[ω̂]2 can be written

in the alternative forms

R− I = 2[ω̂]2,

[ω̂] (R− I) = 2 [ω̂]
3

= −2 [ω̂] ,

[ω̂] (R+ I) = 0.

The resulting equation consists of three linear equations in (ω̂1, ω̂2, ω̂3).
What is the relation between the solution to this linear system and the
logarithm of R?

Exercise 3.9 Exploiting the known properties of rotation matrices, determine
the minimum number of arithmetic operations (multiplication and division, ad-
dition and subtraction) required to multiply two rotation matrices.

Exercise 3.10 Because arithmetic precision is only finite, the numerically
obtained product of two rotation matrices is not necessarily a rotation matrix;
that is, the resulting rotation A may not exactly satisfy ATA = I as desired.
Devise an iterative numerical procedure that takes an arbitrary matrix A ∈ R3×3

and produces a matrix R ∈ SO(3) that minimizes

‖A−R‖2 = tr (A−R)(A−R)T.

(Hint: See Appendix D for the relevant background on optimization.)

Exercise 3.11 Properties of the matrix exponential.
(a) Under what conditions on general A,B ∈ Rn×n does eAeB = eA+B hold?
(b) If A = [Va] and B = [Vb], where Va = (ωa, va) and Vb = (ωb, vb) are

arbitrary twists, then under what conditions on Va and Vb does eAeB =
eA+B hold? Try to give a physical description of this condition.

Exercise 3.12
(a) Given a rotation matrix A = Rot(ẑ, α), where Rot(ẑ, α) indicates a rota-

tion about the ẑ-axis by an angle α, find all rotation matrices R ∈ SO(3)
that satisfy AR = RA.

(b) Given rotation matrices A = Rot(ẑ, α) and B = Rot(ẑ, β), with α 6= β,
find all rotation matrices R ∈ SO(3) that satisfy AR = RB.

(c) Given arbitrary rotation matrices A,B ∈ SO(3), find all solutions R ∈
SO(3) to the equation AR = RB.
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Exercise 3.13
(a) Show that the three eigenvalues of a rotation matrix R ∈ SO(3) each have

unit magnitude, and conclude that they can always be written {µ+ iν, µ−
iν, 1}, where µ2 + ν2 = 1.

(b) Show that a rotation matrix R ∈ SO(3) can always be factored in the
form

R = A




µ ν 0
−ν µ 0

0 0 1


A−1,

where A ∈ SO(3) and µ2 + ν2 = 1. (Hint: Denote the eigenvector associ-
ated with the eigenvalue µ+ iν by x+ iy, x, y ∈ R3, and the eigenvector
associated with the eigenvalue 1 by z ∈ R3. For the purposes of this prob-
lem you may assume that the set of vectors {x, y, z} can always be chosen
to be linearly independent.)

Exercise 3.14 Given ω ∈ R3, ‖ω‖ = 1, and θ a nonzero scalar, show that

(
Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2

)−1
=

1

θ
I − 1

2
[ω] +

(
1

θ
− 1

2
cot

θ

2

)
[ω]2.

(Hint: From the identity [ω]3 = −[ω], express the inverse as a quadratic matrix
polynomial in [ω].)

Exercise 3.15
(a) Given a fixed frame {0} and a moving frame {1} initially aligned with
{0}, perform the following sequence of rotations on {1}:

1. Rotate {1} about the {0} frame x̂-axis by α; call this new frame {2}.
2. Rotate {2} about the {0} frame ŷ-axis by β; call this new frame {3}.
3. Rotate {3} about the {0} frame ẑ-axis by γ; call this new frame {4}.

What is the final orientation R04?
(b) Suppose that the third step above is replaced by the following: “Rotate
{3} about the ẑ-axis of frame {3} by γ; call this new frame {4}.” What
is the final orientation R04?
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(c) Find Tca for the following transformations:

Tab =




1√
2
− 1√

2
0 −1

1√
2

1√
2

0 0

0 0 1 1
0 0 0 1


 , Tcb =




1√
2

0 1√
2

0

0 1 0 1
− 1√

2
0 1√

2
0

0 0 0 1


 .

Exercise 3.16 In terms of the x̂s, ŷs, ẑs coordinates of a fixed space frame
{s}, frame {a} has its x̂a-axis pointing in the direction (0, 0, 1) and its ŷa-axis
pointing in the direction (−1, 0, 0), and frame {b} has its x̂b-axis pointing in the
direction (1, 0, 0) and its ŷb-axis pointing in the direction (0, 0,−1). The origin
of {a} is at (3, 0, 0) in {s} and the origin of {b} is at (0, 2, 0) is {s}.

(a) Draw by hand a diagram showing {a} and {b} relative to {s}.
(b) Write down the rotation matrices Rsa and Rsb and the transformation

matrices Tsa and Tsb.
(c) Given Tsb, how do you calculate T−1

sb without using a matrix inverse?
Write T−1

sb and verify its correctness using your drawing.
(d) Given Tsa and Tsb, how do you calculate Tab (again without using ma-

trix inverses)? Compute the answer and verify its correctness using your
drawing.

(e) Let T = Tsb be considered as a transformation operator consisting of a
rotation about x̂ by −90◦ and a translation along ŷ by 2 units. Calculate
T1 = TsaT . Does T1 correspond to a rotation and translation about x̂s and
ŷs, respectively (a world-fixed transformation of Tsa), or a rotation and
translation about x̂a and ŷa, respectively (a body-fixed transformation of
Tsa)? Now calculate T2 = TTsa. Does T2 correspond to a body-fixed or
world-fixed transformation of Tsa?

(f) Use Tsb to change the representation of the point pb = (1, 2, 3) in {b}
coordinates to {s} coordinates.

(g) Choose a point p represented by ps = (1, 2, 3) in {s} coordinates. Calcu-
late p′ = Tsbps and p′′ = T−1

sb ps. For each operation, should the result
be interpreted as changing coordinates (from the {s} frame to {b}) with-
out moving the point p, or as moving the location of the point without
changing the reference frame of the representation?

(h) A twist V is represented in {s} as Vs = (3, 2, 1,−1,−2,−3). What is its
representation Va in frame {a}?

(i) By hand, calculate the matrix logarithm [S]θ of Tsa. (You may verify your
answer with software.) Extract the normalized screw axis S and rotation
amount θ. Find the {q, ŝ, h} representation of the screw axis. Redraw the
fixed frame {s} and in it draw S.
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(j) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rigid-body motion Sθ = (0, 1, 2, 3, 0, 0). Draw the corresponding
frame relative to {s}, as well as the screw axis S.

{b}

x̂b

ŷb
ẑb

{c}
x̂c

ŷc
ẑc

{a}

x̂a

ŷa

ẑa

{d}

x̂d

ŷd

ẑd

1

1

2

Figure 3.23: Four reference frames defined in a robot’s workspace.

Exercise 3.17 Four reference frames are shown in the robot workspace of
Figure 3.23: the fixed frame {a}, the end-effector frame effector {b}, the camera
frame {c}, and the workpiece frame {d}.

(a) Find Tad and Tcd in terms of the dimensions given in the figure.
(b) Find Tab given that

Tbc =




1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1


 .
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{a}

{r}

{s}

{e}

Figure 3.24: A robot arm mounted on a spacecraft.

Exercise 3.18 Consider a robot arm mounted on a spacecraft as shown in
Figure 3.24, in which frames are attached to the Earth {e}, a satellite {s}, the
spacecraft {a}, and the robot arm {r}, respectively.

(a) Given Tea, Tar, and Tes, find Trs.
(b) Suppose that the frame {s} origin as seen from {e} is (1, 1, 1) and that

Ter =




−1 0 0 1
0 1 0 1
0 0 −1 1
0 0 0 1


 .

Write down the coordinates of the frame {s} origin as seen from frame
{r}.

Exercise 3.19 Two satellites are circling the Earth as shown in Figure 3.25.
Frames {1} and {2} are rigidly attached to the satellites in such a way that their
x̂-axes always point toward the Earth. Satellite 1 moves at a constant speed
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{1}

{2}

v1
v2

R1 R2
30◦

ŷ0

ẑ0

x̂1

ŷ1

x̂2

ŷ2

Satellite 1

Satellite 2

{0}
x̂0

Figure 3.25: Two satellites circling the Earth.

v1, while satellite 2 moves at a constant speed v2. To simplify matters, ignore
the rotation of the Earth about its own axis. The fixed frame {0} is located at
the center of the Earth. Figure 3.25 shows the position of the two satellites at
t = 0.

(a) Derive the frames T01, T02 as a function of t.
(b) Using your results from part (a), find T21 as a function of t.

'{a}

{b}

{c}

x̂

ŷ

ẑ

x̂a

ŷa

ẑa

x̂b

ŷb

ẑb

x̂c

ŷc

ẑc

L

D

radius = r

radius = 2r

Figure 3.26: A high-wheel bicycle.
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Exercise 3.20 Consider the high-wheel bicycle of Figure 3.26, in which the
diameter of the front wheel is twice that of the rear wheel. Frames {a} and {b}
are attached respectively to the centers of the wheels, and frame {c} is attached
to the top of the front wheel. Assuming that the bike moves forward in the
ŷ-direction, find Tac as a function of the front wheel’s rotation angle θ (assume
θ = 0 at the instant shown in the figure).

☆

{a}

{b}

{c}
x̂a

ŷa

ẑa
ŷcẑc

ω1

ω2

30◦

R

p

r

North Star

Docking port
radius: r

Figure 3.27: A spacecraft and space station.

Exercise 3.21 The space station of Figure 3.27 moves in circular orbit around
the Earth, and at the same time rotates about an axis always pointing toward
the North Star. Owing to an instrument malfunction, a spacecraft heading
toward the space station is unable to locate the docking port. An Earth-based
ground station sends the following information to the spacecraft:

Tab =




0 −1 0 −100
1 0 0 300
0 0 1 500
0 0 0 1


 , pa =




0
800
0


 ,

where pa is the vector p expressed in {a}-frame coordinates.
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(a) From the given information, find rb, the vector r expressed in {b}-frame
coordinates.

(b) Determine Tbc at the instant shown in the figure. Assume here that the ŷ-
and ẑ-axes of the {a} and {c} frames are coplanar with the docking port.

{1}

{2}

{0}

{3}

x̂0

ŷ0

x̂1

ŷ1

x̂2

ŷ2

ẑ2

ŷ3

ẑ3

ω

θ
T1(t = 0)

L1(t = 0)

v

T2

L2

Target

Laser

Figure 3.28: A laser tracking a moving target.

Exercise 3.22 A target moves along a circular path at constant angular ve-
locity ω rad/s in the x̂–ŷ-plane, as shown in Figure 3.28. The target is tracked
by a laser mounted on a moving platform, rising vertically at constant speed v.
Assume that at t = 0 the laser and the platform start at L1, while the target
starts at frame T1.

(a) Derive the frames T01, T12, T03 as functions of t.
(b) Using your results from part (a), derive T23 as a function of t.

Exercise 3.23 Two toy cars are moving on a round table as shown in Fig-
ure 3.29. Car 1 moves at a constant speed v1 along the circumference of the
table, while car 2 moves at a constant speed v2 along a radius; the positions of
the two vehicles at t = 0 are shown in the figures.

(a) Find T01 and T02 as a function of t.
(b) Find T12 as a function of t.
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{1}

{2}

{0}
x̂0

ŷ0

x̂1

ŷ1x̂2

ŷ2

v1

v2

45◦
45◦ R = 2

H = 2

L = 1

L = 1

L = 1

L = 1

{1}
{2}

{0} x̂0

ŷ0

ẑ0

x̂1
ŷ1

ẑ1

x̂2

ŷ2

ẑ2 Top View

Figure 3.29: Two toy cars on a round table.

Exercise 3.24 Figure 3.30 shows the configuration, at t = 0, of a robot
arm whose first joint is a screw joint of pitch h = 2. The arm’s link lengths
are L1 = 10, L2 = L3 = 5, and L4 = 3. Suppose that all joint angular
velocities are constant, with values ω1 = π/4, ω2 = π/8, ω3 = −π/4 rad/s. Find
Tsb(4) ∈ SE(3), i.e., the configuration of the end-effector frame {b} relative to
the fixed frame {s} at time t = 4.

Exercise 3.25 A camera is rigidly attached to a robot arm, as shown in
Figure 3.31. The transformation X ∈ SE(3) is constant. The robot arm moves
from posture 1 to posture 2. The transformations A ∈ SE(3) and B ∈ SE(3)
are measured and can be assumed to be known.

(a) Suppose that X and A are given as follows:

X =




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 , A =




0 0 1 0
0 1 0 1
−1 0 1 0
0 0 0 1


 .

What is B?
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{s}
{b}

x̂s ŷs

ẑs

x̂b

ŷb

ẑb

L1

L2

L3

L4

ω1

ω2

ω3

A

Figure 3.30: A robot arm with a screw joint.

(b) Now suppose that

A =

[
RA pA
0 1

]
, B =

[
RB pB
0 1

]

are known and we wish to find

X =

[
RX pX
0 1

]
.

Set RA = e[α] and RB = e[β]. What are the conditions on α ∈ R3 and
β ∈ R3 for a solution RX to exist?

(c) Now suppose that we have a set of k equations

AiX = XBi for i = 1, . . . , k.

Assume that Ai and Bi are all known. What is the minimum number k
for which a unique solution exists?
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{c}

{t}

{c }

{t }

X

BX

pose 1

pose 2

camera

tip

A

Figure 3.31: A camera rigidly attached to a robot arm.

Exercise 3.26 Draw the screw axis for which q = (3, 0, 0), ŝ = (0, 0, 1), and
h = 2.

Exercise 3.27 Draw the screw axis for the twist V = (0, 2, 2, 4, 0, 0).

Exercise 3.28 Assume that the space-frame angular velocity is ωs = (1, 2, 3)
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for a moving body with frame {b} at

R =




0 −1 0
0 0 −1
1 0 0




relative to the space frame {s}. Calculate the body’s angular velocity ωb in {b}.

Exercise 3.29 Two frames {a} and {b} are attached to a moving rigid body.
Show that the twist of {a} in space-frame coordinates is the same as the twist
of {b} in space-frame coordinates.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2

ŷ2

ẑ2

1

1

(a) A first screw motion.

{0} {1}

{2}

x̂0

ŷ0

ẑ0

x̂1

ŷ1

ẑ1

x̂2
ŷ2

ẑ2

1

1

(b) A second screw motion.

Figure 3.32: A cube undergoing two different screw motions.

Exercise 3.30 A cube undergoes two different screw motions from frame {1}
to frame {2} as shown in Figure 3.32. In both cases, (a) and (b), the initial
configuration of the cube is

T01 =




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


 .

(a) For each case, (a) and (b), find the exponential coordinates Sθ = (ω, v)θ
such that T02 = e[S]θT01, where no constraints are placed on ω or v.

(b) Repeat (a), this time with the constraint that ‖ωθ‖ ∈ [−π, π].

Exercise 3.31 In Example 3.19 and Figure 3.16, the block that the robot must
pick up weighs 1 kg, which means that the robot must provide approximately
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10 N of force in the ẑe-direction of the block’s frame {e} (which you can assume
is at the block’s center of mass). Express this force as a wrench Fe in the {e}
frame. Given the transformation matrices in Example 3.19, express this same
wrench in the end-effector frame {c} as Fc.

Exercise 3.32 Given two reference frames {a} and {b} in physical space, and
a fixed frame {o}, define the distance between frames {a} and {b} as

dist(Toa, Tob) ≡
√
θ2 + ||pab||2

where Rab = e[ω̂]θ. Suppose that the fixed frame is displaced to another frame
{o′} and that To′a = SToa, To′b = STo′b for some constant S = (Rs, ps) ∈ SE(3).
(a) Evaluate dist(To′a, To′b) using the above distance formula.
(b) Under what conditions on S does dist(Toa, Tob) = dist(To′a, To′b)?

Exercise 3.33 (a) Find the general solution to the differential equation ẋ =
Ax, where

A =

[
−2 1
0 −1

]
.

What happens to the solution x(t) as t→∞?
(b) Do the same for

A =

[
2 −1
1 2

]
.

What happens to the solution x(t) as t→∞?

Exercise 3.34 Let x ∈ R2, A ∈ R2×2, and consider the linear differential
equation ẋ(t) = Ax(t). Suppose that

x(t) =

[
e−3t

−3e−3t

]

is a solution for the initial condition x(0) = (1,−3), and

x(t) =

[
et

et

]

is a solution for the initial condition x(0) = (1, 1). Find A and eAt.

Exercise 3.35 Given a differential equation of the form ẋ = Ax+ f(t), where
x ∈ Rn and f(t) is a given differentiable function of t, show that the general
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solution can be written

x(t) = eAtx(0) +

∫ t

0

eA(t−s)f(s) ds.

(Hint: Define z(t) = e−Atx(t) and evaluate ż(t).)

Exercise 3.36 Referring to Appendix B, answer the following questions re-
lated to ZXZ Euler angles.

(a) Derive a procedure for finding the ZXZ Euler angles of a rotation matrix.
(b) Using the results of (a), find the ZXZ Euler angles for the following rota-

tion matrix: 

− 1√

2
1√
2

0

− 1
2 − 1

2
1√
2

1
2

1
2

1√
2


 .

Exercise 3.37 Consider a wrist mechanism with two revolute joints θ1 and
θ2, in which the end-effector frame orientation R ∈ SO(3) is given by

R = e[ω̂1]θ1e[ω̂2]θ2 ,

with ω̂1 = (0, 0, 1) and ω̂2 = (0, 1√
2
,− 1√

2
). Determine whether the following

orientation is reachable (that is, find, if it exists, a solution (θ1, θ2) for the
following R):

R =




1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2




Exercise 3.38 Show that rotation matrices of the form


r11 r12 0
r21 r22 r23

r31 r32 r33




can be parametrized using just two parameters θ and φ as follows:



cos θ − sin θ 0
sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ


 .

What should the range of values be for θ and φ?
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{0}

{3}

x̂0

ŷ0

ẑ0

ẑ0

x̂3

ŷ3

ẑ3

α

β

45◦

γ

Figure 3.33: A three-degree-of-freedom wrist mechanism.

Exercise 3.39 Figure 3.33 shows a three-dof wrist mechanism in its zero
position (i.e., all joint angles are set to zero).

(a) Express the tool-frame orientation R03 = R(α, β, γ) as a product of three
rotation matrices.

(b) Find all possible angles (α, β, γ) for the two values of R03 given below. If
no solution exists, explain why this is so in terms of the analogy between
SO(3) and a solid ball of radius π.
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(i) R03 =




0 1 0
1 0 0
0 0 −1


 .

(ii) R03 = e[ω̂]π/2, where ω̂ = (0, 1√
5
, 2√

5
).

Exercise 3.40 Refer to Appendix B.
(a) Verify formulas (B.10) and (B.11) for the unit quaternion representation

of a rotation R ∈ SO(3).
(b) Verify formula (B.12) for the rotation matrix R representation of a unit

quaternion q ∈ S3.
(c) Verify the product rule for two unit quaternions. That is, given two unit

quaternions q, p ∈ S3 corresponding respectively to the rotations R,Q ∈
SO(3), find a formula for the unit quaternion representation of the product
RQ ∈ SO(3).

Exercise 3.41 The Cayley transform of Equation (B.18) in Appendix B can
be generalized to higher orders as follows:

R = (I − [r])k(I + [r])−k. (3.99)

(a) For the case k = 2, show that the rotation R corresponding to r can be
computed from the formula

R = I − 4
1− rTr

(1 + rTr)2
[r] +

8

(1 + rTr)2
[r]2. (3.100)

(b) Conversely, given a rotation matrix R, show that a vector r that satisfies
Equation (3.100) can be obtained as

r = −ω̂ tan
θ

4
, (3.101)

where, as before, ω̂ is the unit vector along the axis of rotation for R, and
θ is the corresponding rotation angle. Is this solution unique?

(c) Show that the angular velocity in the body frame obeys the following
relation:

ṙ =
1

4

(
(1− rTr)I + 2[r] + 2rrT

)
ω. (3.102)

(d) Explain what happens to the singularity at π that exists for the standard
Cayley–Rodrigues parameters. Discuss the relative advantages and dis-
advantages of the modified Cayley–Rodrigues parameters, particularly for
order k = 4 and higher.
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(e) Compare the number of arithmetic operations needed for multiplying two
rotation matrices, two unit quaternions, or two Cayley–Rodrigues repre-
sentations. Which requires the fewest arithmetic operations?

Exercise 3.42 Rewrite the software for Chapter 3 in your favorite program-
ming language.

Exercise 3.43 Write a function that returns “true” if a given 3× 3 matrix is
within ε of being a rotation matrix and “false” otherwise. It is up to you how
to define the “distance” between a random 3 × 3 real matrix and the closest
member of SO(3). If the function returns “true,” it should also return the
“nearest” matrix in SO(3). See, for example, Exercise 3.10.

Exercise 3.44 Write a function that returns “true” if a given 4× 4 matrix is
within ε of an element of SE(3) and “false” otherwise.

Exercise 3.45 Write a function that returns “true” if a given 3× 3 matrix is
within ε of an element of so(3) and “false” otherwise.

Exercise 3.46 Write a function that returns “true” if a given 4× 4 matrix is
within ε of an element of se(3) and “false” otherwise.

Exercise 3.47 The primary purpose of the provided software is to be easy
to read and educational, reinforcing the concepts in the book. The code is
optimized neither for efficiency nor robustness, nor does it do full error-checking
on its inputs.

Familiarize yourself with the whole code in your favorite language by reading
the functions and their comments. This should help cement your understanding
of the material in this chapter. Then:

(a) Rewrite one function to do full error-checking on its input, and have the
function return a recognizable error value if the function is called with an
improper input (e.g., an argument to the function is not an element of
SO(3), SE(3), so(3), or se(3), as expected).

(b) Rewrite one function to improve its computational efficiency, perhaps by
using what you know about properties of rotation or transformation ma-
trices.

(c) Can you reduce the numerical sensitivity of either of the matrix logarithm
functions?
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Exercise 3.48 Use the provided software to write a program that allows the
user to specify an initial configuration of a rigid body by T , a screw axis specified
by {q, ŝ, h} in the fixed frame {s}, and the total distance traveled along the
screw axis, θ. The program should calculate the final configuration T1 = e[S]θT
attained when the rigid body follows the screw S a distance θ, as well as the
intermediate configurations at θ/4, θ/2, and 3θ/4. At the initial, intermediate,
and final configurations, the program should plot the {b} axes of the rigid
body. The program should also calculate the screw axis S1 and the distance
θ1 following S1 that takes the rigid body from T1 to the origin and it should
plot the screw axis S1. Test the program with q = (0, 2, 0), ŝ = (0, 0, 1), h = 2,
θ = π, and

T =




1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1


 .

Exercise 3.49 In this chapter, we developed expressions for the matrix expo-
nential for spatial motions mapping elements of so(3) to SO(3) and elements
of se(3) to SE(3). Similarly, we developed algorithms for the matrix logarithm
going the other direction.

We could also develop matrix exponentials for planar motions, from so(2)
to SO(2) and from se(2) to SE(2), as well as the matrix logarithms going
from SO(2) to so(2) and SE(2) to se(2). For the so(2) to SO(2) case there
is a single exponential coordinate. For the se(2) to SE(2) case there are three
exponential coordinates, corresponding to a twist with three elements set to
zero, V = (0, 0, ωz, vx, vy, 0).

For planar rotations and planar twists we could apply the matrix exponen-
tials and logarithms that we derived for the spatial case by simply expressing
the so(2), SO(2), se(2), and SE(2) elements as elements of so(3), SO(3), se(3),
and SE(3). Instead, in this problem, write down explicitly the matrix expo-
nential and logarithm for the so(2) to SO(2) case using a single exponential
coordinate, and the matrix exponential and logarithm for the se(2) to SE(2)
case using three exponential coordinates. Then provide software implementa-
tions of each of the four functions in your favorite programming language, and
provide execution logs that show that they function as expected.
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