
Tsai’s Method: Calibration from 3D Objects
• This method was proposed in 1987 by Tsai and consists of measuring the 3D position of 𝒏 ≥ 𝟔 control

points on a 3D calibration target and the 2D coordinates of their projection in the image.
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Tsai, Roger Y. (1987) “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,’’
IEEE Journal of Robotics and Automation, 1987. PDF.

https://pdfs.semanticscholar.org/0bbe/1336be701dac110b0d8145e83b87710704e6.pdf


Applying the Direct Linear Transform (DLT) algorithm
The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

Minimal solution

1
2

• 𝑄(2𝑛×12) should have rank 11 to have a unique (up to a scale) non-zero solution 𝑀

• Because each 3D-to-2D point correspondence provides 2 independent equations, then 5+ point correspondences are
needed (in practice 6 point correspondences!)

Over-determined solution
• For 𝑛  ≥  6 points, a solution is the Least Square solution, which minimizes the sum of squared residuals, | 𝑄𝑀 |2, 

subject to the constraint | 𝑀 |2 = 1. It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄 (because it is the unit vector 𝑥 that minimizes
| 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇 𝑄𝑥.

• Matlab instructions:
• [U,S,V] = SVD(Q);
• M = V(:,12);
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QM = 0



9

Applying the Direct Linear Transform (DLT) algorithm
• Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

M = K(R | T)
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Considering the first three columns of M, it is equal to K R, 
the product of an upper triangular matrix and an orthogonal matrix

We can use the QR decomposition from linear algebra



Example of Tsai’s Calibration Results
Recommendation: use many more than 6 points (ideally more than 20) and non coplanar

World frame

Zw

Yw Xw

𝜶𝒖 𝜶𝒖/𝜶𝒗 𝑲𝟏𝟐 𝒖𝟎 𝒗𝟎 Average 
Reprojection 

error
1673.3 1.0063 1.39 379.96 305.78 0.365

Why is this What is this?
ratio not 1?

What is this?

Corners can be detected with accuracy < 0.1 pixels 
(see Lecture 5)

How can we estimate the lens distortion parameters?
How can we enforce 𝛼𝑢 = 𝛼𝑣 and 𝐾12 = 0 ?
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Intrinsic Parameters
(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

https://www.mathworks.com/help/vision/ug/camera-calibration.html


Non-linear Lens Distortion 
(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

https://www.mathworks.com/help/vision/ug/camera-calibration.html


Reprojection Error

C

𝑝𝑖Observed point
Reprojected point

𝑊𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇

𝑅, 𝑇

• The reprojection error is the Euclidean distance (in pixels) between an observed image point and the
corresponding 3D point reprojected onto the camera frame.

• The reprojection error gives us a quantitative measure of the accuracy of the calibration (ideally it should
be zero).

Pi
W

World

Reprojection
error
𝑊𝑝𝑖 − 𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇
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Reprojection Error
• The reprojection error can be used to assess the quality of the camera calibration
• What reprojection error is acceptable?
• What are the sources of the reprojection error?
• How can we further improve the calibration parameters?

Reprojected pointsControl points
(observed points) 𝑃𝑖𝜋 , 𝐾, 𝑅, 𝑇𝑊
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Non-Linear Calibration Refinement

𝑖=1

• This time we also include the lens distortion (can be
set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt
(more robust than Gauss-Newton to local minima)

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

𝐾, 𝑅, 𝑇, 𝑙𝑒𝑛𝑠 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =
𝑛

𝐾,𝑅,𝑇,𝑙𝑒𝑛𝑠 𝑊

Reprojected pointsControl points
(observed points) 𝑃𝑖𝜋 , 𝐾, 𝑅, 𝑇𝑊
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𝑎𝑟𝑔𝑚𝑖𝑛 ෍  𝑝𝑖 − 𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇 2
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Zhang’s Algorithm: Calibration from Planar Grids
• Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical
• Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker

board)
• They are based on a method developed in 2000 by Zhang (Microsoft Research)

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.
19

http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
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Applying the Direct Linear Transform (DLT) algorithm
As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., 𝒁𝒘 = 𝟎, and thus we can write:


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Applying the Direct Linear Transform (DLT) algorithm

𝑖where ℎT is the i-th row of 𝐻
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Conversion back from homogeneous coordinates to pixel coordinates leads to:

Applying the Direct Linear Transform (DLT) algorithm
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2 i 3 i

(hT − u hT )  P = 0
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Applying the Direct Linear Transform (DLT) algorithm

• By re-arranging the terms, we obtain:

• For 𝑛 points (from a single view), we can stack all these equations into a big matrix:
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Applying the Direct Linear Transform (DLT) algorithm

QH = 0
Minimal solution

• 𝑄(2𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻

• Each point correspondence provides 2 independent equations

• Thus, a minimum of 4 non-collinear points is required

Over-determined solution

• n ≥ 4 points
• It can be solved through Singular Value Decomposition (SVD) (same considerations as before)
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How to recover 𝐾, 𝑅, 𝑇

• 𝐻 can be decomposed by recalling that:
• Differently from Tsai’s, the 

decomposition of 𝐻 into 𝐾, 𝑅, 𝑇 
requires at least two views

• In practice the more views the better, e.g., 20-50 views spanning the entire field of view
of the camera for the best calibration results

• Notice that now each view 𝑗 has a different homography 𝐻𝑗 (and so a different 𝑅𝑗 and
𝑇𝑗). However, 𝑲 is the same for all views:
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